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Computational Toxicology at UC Berkeley

 Focus on chemicals in the environment, consumer
products, and chemicals as therapeutics

 Undergraduate Molecular Toxicology major
— 2006 -2010

* Required 4 credit course — individual/group projects, independent
study and honors research

* ~10% of students received internships at FDA

* 9 students with publications, 10 students with publications pending, 6
posters presented by students at national meetings, 1 student co-
authored book chapter

- 2011 —

» Splitting educational concept into 2 courses
« NST 121 Computational Toxicology (3 credits)

— Toolbox creation, environmental and disease related issues
« NST 115 Principles of Drug Action (2 credits)

— Therapeutics and new data sources



UCB Computational Toxicology Definition

The application of computer technology and mathematical / computational
models to analyze, model and/or predict potential toxicological effects from:

— Chemical structure (parent compound or metabolites)
— Inference from similar compounds

— Exposure, bioaccumulation, persistence
» Biomonitoring data
» Plasma or tissue concentrations

— Differential indicators or patterns related to exposure (biomarkers)
— Networks of biological pathways affected by the chemical
To further understand mechanisms of toxicity
— Qrganism specific
— QOrgan specific
— Disease specific
To explain why certain individuals are more susceptible

Key methods
— Chemical fragment or structural similarities (structural alerts)
— Categorization or grouping
« Analogs, categories based on mechanism, mode of action
— QSARs
— Biological pathway perturbations



Course Structure and Resources

UC Berkeley computer laboratory
— College of Natural Resources; Geospatial Innovation Facility (GIF); Mulford
— Full administrative and technical support
Tool Box Creation
— A combination of free on-line resources and commercial software
— Major software contribution from Genego, Inc.
— Converting chemical and biologic data into usable formats
— Student proficiency exercises
Tutorials and resources
— Toxicology tutorials for non-toxicology majors
— Software tutorials and user manuals
— Extensive links to software, datasets, environmental and chemical information

Environmental or therapeutic challenge
— 2010 student example

— Create in silico methods to identify and prioritize chemicals of concern that may
increase the risk of human breast cancer

— Innovate to solve chemical-related disease issues in new ways



Challenges: 2006 — 2011

Toxicity data exists In different databases, different
formats, and not always compatible for in silico
modeling

Difficult to select and combine chemical and toxicity
data from multiple sources

Difficult to integrate public and “in-house” data, and to
Incorporate predictions from various applications

Development, validation, application, and
Interpretation of QSAR models difficult for most
toxicologists

However...... ..



The Good News

Continued increased availability of larger and better
curated public databases

e Increase in open-source predictive tools

 Now very close to providing:

— Flexible framework that integrates existing data sources,
predictive solutions, and emerging developments

— Integration of chemical-biological data acquisition, filtering,
and processing

 Interactions between proteins, genes, networks, and chemicals

» Possible metabolic transformations of chemical

« Mutants and variants of proteins that define population or individual
susceptibility



Why it Is Important to view computational
toxicology from both the therapeutic
and environmental sides



Computational Toxicology had early roots In
combinatorial chemistry

* Rapid synthesis or computer simulation of a large number of
different but structurally related molecules or materials — (by building
blocks)

» Highly parallel or split-pool chemical synthesis, resulting in
thousands to millions of compounds

e 1000’s of compounds in mixture (liquid state, solid state, in silico)
» De-convolution by:

— structural similarity categories

— rank order elimination algorithms based on targeted screening

 The key lessons:
— Analog identification and categorization crucial for unknowns
— Structural features are related to chemical-biological effects
— SAR & QSAR could be used to fill data gaps with caution
— Huge difference in rank ordering and predicting endpoints
— Proper weighting of endpoint criteria essential



The ~100K Chemical Challenge

« Data gap filling— Specific experimental data is preferred but

often scarce
— Modeled data is sometimes unreliable (e.g. outside domain of
applicability)
« Use available “read-across” physical or chemical data from an
analogous chemical or chemicals (e.g. water solubllity)
— Make predictions for missing toxicological and fate data
— Quantitative or qualitative

« Enables grouping of chemicals — Separate similar assessments
Or one category assessment
— Results partly based on common properties and modes of action
— Increase consistency between assessments— Interpretation of data,
— Areas of similarity and uncertainty
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Schadt E, et al. Nat Rev Drug Discov (2009) 8:286



Figure 8 Assoclating pathways with hepatotoxic effects. The drugs that are assodated with hepatotoicity-related slde affects are assoclated with
thair targets using CrugBank. The tamgets are assoclated with pathiways using KBEGG toestablish assoclation chains between pathiways and side-effects.

Chen B, et al. BMC Bioinformatics (2010) 11: 255




Consider the 2010 student example

Create in silico methods to identify and prioritize chemicals of
concern that may increase the risk of human breast cancer
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Biological pathway analysis: testing large sets of

compounds

to understand molecular targets
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Methods to fill “data gaps”

e Structural alerts (reactive chemical motifs)
— ToxTree, and combinations of models

« Analog identification
— AIM (analog identification methodology — EPA)
— OECD Toolbox
— CAESAR and Lazy QSAR
— ToxMatch

e Categorization



Application to Green Chemistry Curriculum

Toxicology tutorials for non-toxicology majors
— http://sis.nlm.nih.gov/enviro/toxtutor.html
User guides and tutorials for:

— Structural alerts, analog identification, categorization, data
sources, QSARS

Flexible integration framework
— OpenTox Www.opentox.com
— Hardy B, et al J. Cheminformatics (2010) 2:7

Integration of chemical-biological and systems bio
Information

— Genego, Inc. www.genego.com




