REACH: the New European Chemicals Legislation

David A. Eastmond
Environmental Toxicology Program
University of California, Riverside
Registration, Evaluation, Authorization, and Restriction of Chemicals
REACH

• Most significant body of chemical regulation to be enacted in more than 20 years.
• Although it is a European legislation, the global nature of chemical production and manufacturing ensures that it will have widespread impacts throughout the world, including California.
• It is estimated to involve 30,000 chemicals and many of the products that contain them.
European Chemical Industry

• One of the largest manufacturing industries in the European Union (EU) directly employing 1.9 million people.

• In 2004, the European chemicals sales amounted to $800 billion. [Those of the US totaled $566 billion.]

• Chemical exposures are a major cause for concern for many Europeans, particularly those from Scandinavian countries.
Existing European Chemical Regulation

• Patchwork system involving ~60 laws
• Primary law (EC 793/93) was enacted in 1981 and created a two tier system.
 – For 100,000 existing chemicals, no testing was required.
 – For new chemicals (>10 kg), substantial testing is required.
• Broadly perceived by Europeans as having serious weaknesses.
REACH Chronology

Europe

• 1998-99 Working group established
• 2001 White paper and draft legislation published
• 2003 Commission proposed legislation

United States

• 1984 NRC study on toxicity testing
• 1997 Environmental Defense publishes Toxic Ignorance
• 1998 HPV Challenge program initiated
• 2002 USG initiates vigorous effort to oppose REACH
Legislative Bodies within the European Union

EU Citizens - 480 Million in 27 Member Nations

- **National Governments**
 - Elected
 - 27 Ministers per area
 - 6 month presidency

- **European Parliament**
 - Elected
 - ~780 members, multiple parties
 - Environment Committee
 - Industry Committee
 - Internal Market Committee

- **Commission**
 - Appointed/EP approves
 - 20 Members

- **European Council**
 - Commission Pres + 27 Heads of State
 - Council
 - 27 Ministers per area
 - 6 month presidency
Position of US Government

- Appreciates and understands REACH’s health and environmental goals
- Costly: need for cost-benefit analyses
- Workability: complex and burdensome
- Impact on EU competitiveness and innovation
- Non-tariff trade barrier for the US chemical industry and for US imports to Europe
- Interfere with on-going international efforts
- Technical ability to implement
REACH Chronology (cont.)

Europe

- 2004-05 More than 1000 amendments proposed
- 2005 1st Reading completed in EP
- 2006 Council adopts common position
 Agreement on most points of a scaled back proposal
- 2006 Passed during the 2nd Reading

United States

- 2004 Waxman report published
- 2005 GAO study published
- 2006 UC PRC Green Chemistry report released
REACH Legislation

• Introduces registration and mandatory data requirements for new and an estimated 30,000 existing chemicals
• Transfers responsibility for risk assessment from government to the manufacturers and importers
• Includes downstream uses in the registration and management process
REACH Legislation (cont.)

- Introduces authorization and restriction procedures for the most hazardous chemicals
- Provides greater transparency and public access to information
- Establishes a new European Chemicals Agency
REACH Implementation

- **Dec. 2006:** REACH was passed by both the European Parliament and the European Council
- **June 2007:** REACH enters into force
- **June 2008:** European Chemicals Agency becomes operational. It will be located in Helsinki, Finland and is anticipated to eventually have a staff of 450.
- **June - Nov. 2008:** Pre-registration of existing substances.
Nov. 2010: Registration deadline for ≥1000 ton substances as well as carcinogens, mutagens, and reproductive toxicants produced at >1 ton, and agents very toxic to aquatic organisms produced at >100 tons.

June 2013: Registration deadline for substances produced in ≥100 tons and substances toxic to the aquatic environment.

June 2018: Registration deadline for substances produced in quantities of ≥1 ton.
REACH

• **Pre-Registration**
 - For substances produced in quantities \(\geq 1 \) ton per year, basic information on the chemical, contact information, the anticipated production volume and registration deadline is to be provided to the new European Chemicals Agency (ECA).
REACH

• Registration
 – For substances produced in quantities ≥1 ton per year, a registration dossier is to be provided to ECA. Based largely on volume, specific information about physicochemical, toxicological and ecotoxicological properties must be included. If additional testing is necessary, a test plan including coordinated animal testing, needs to be submitted.
REACH

• **Registration (cont.)**
 – Individual downstream uses throughout the supply chain as well as the associated risks and safety measures must be provided.
 – For chemicals ≥10 tons, a Chemical Safety Report must also be provided.
Testing/Data Requirements

<table>
<thead>
<tr>
<th></th>
<th>>1 t/yr</th>
<th>>10 t/yr</th>
<th>>100 t/yr</th>
<th>>1000 t/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical-chem. data</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Environmental fate</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Ecotox. data</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Mammalian tox.-related data</td>
<td>6</td>
<td>14</td>
<td>18</td>
<td>24</td>
</tr>
</tbody>
</table>

Note: These numbers are approximate and represent high end estimates as many of the test requirements are conditional.
REACH

• **Evaluation**
 – Member states can check compliance and examine testing proposals.
 – Member states may also examine dossiers to evaluate whether a substance presents a risk to humans or the environment.
REACH

- **Authorization**
 - Required for substances considered to be CMR (carcinogenic, mutagenic or reproductive toxicants), PBTs (persistent, bioaccumulative and toxic), and vPvBs (very persistent and very bioaccumulative).
Authorization (cont.)

- Authorization granted if the manufacturer or importer is able to demonstrate that the risks can be adequately controlled. If not controllable, the chemical must be shown to have compelling socio-economic benefits without suitable alternatives. A research plan is also to be submitted.
Restriction

- If a risk is identified as inadequately controlled, a proposal to restrict the use and marketing of a substance can be made by the Commission or a Member State.
- The final decision on authorization will be taken by the Commission, in consultation with the Member States.
Testing/Data Requirements Under REACH
Physicochemical Tests

- **≥1 Ton**: Physical state, melting/freezing point, boiling point, relative density, vapor pressure, surface tension, water solubility, partition coefficient, flash-point, flammability, explosive properties, self-ignition temperature, oxidizing properties, granulometry.

- **≥100 Tons**: Stability in organic solvents and identity of relevant degradation products, dissociation constant, viscosity.
Toxicological Test Examples

• ≥ 1 Ton*: Skin irritation (2 in vitro), eye irritation (1 in vitro), skin sensitization (murine lymph node assay), mutagenicity (1 bacterial gene mutation), acute toxicity (oral)

• ≥10 Tons: Skin irritation (in vivo), eye irritation (in vivo), mutagenicity (2 in vitro), acute toxicity (inhalation or dermal), repeated dose toxicity (28 days), repro/developmental toxicity screen (1 species), toxicokinetics.
Toxicological Tests (cont.)

- **≥ 100 Tons**: Mutagenicity (1 in vivo), repeated dose toxicity (90 day), developmental (1 in vivo), 2 generation reproductive study.
- **≥1000 Tons**: Mutagenicity study (in vivo), long term toxicity study (≥12 months), reproductive toxicity, two generation study, carcinogenicity study.

- **Note**: Most test requirements are conditional and are in addition to test requirements at lower levels.
Ecotoxicological and Environmental Fate Test Examples

- **≥ 1 Ton**: Aquatic toxicity (short-term test in Daphnia; growth inhibition study in algae), biotic biodegradability.
- **≥10 Tons**: Aquatic toxicity (short-term test in fish; activated sludge respiration inhibition), biotic and abiotic degradation, adsorption/desorption screening
Ecotoxicological and Environmental Fate Tests (cont.)

- **≥ 100 Tons**: Aquatic toxicity - long-term test in Daphnia; toxicity tests in fish (early life stage, short-term test on embryo and early fry stages, and juvenile growth test), bioconcentration in fish, degradation simulated in surface water, soil and sediment, identification of biodegradation products, adsorption/desorption, short-term toxicity to earthworms, soil microbes, plants.

- **≥1000 Tons**: Biodegradation (aerobic & anaerobic), environmental fate, long-term toxicity to terrestrial invertebrates, plants, sediment organisms, birds
REACH Impacts

- Estimated to involve 30,000 chemicals and most articles manufactured in Europe or imported.
- **Direct costs**: Best estimates ranged from ~$3.5 to 6.3 billion (<0.1% of sales; some estimates were projected to $50+ billion).
- **Benefits**: Hard to quantify. Hypothesized to prevent 4500 cancer cases per year with possible overall health savings of up to $50 billion over 30 years.
“The Awakening” by J. Seward Johnson, Jr. located in East Potomac Park
Acknowledgements

• The Jefferson Science Fellows Program
 • George Atkinson, the Science and Technology Advisor to the Secretary
 • MacArthur Foundation and Carnegie Corporation
 • Colleagues in the Office of the European Union and Regional Affairs (EUR/ERA)
 • University of California, Riverside
Questions?

- Dr. David A. Eastmond
 Environmental Toxicology Program
 University of California
 Riverside, CA 92521
- david.eastmond@ucr.edu
- 951-827-4497 [telephone]
- 951-827-3087 [fax]