FOREWORD

The California Department of Toxic Substances Control (DTSC) is issuing this Vapor Intrusion Mitigation Advisory for immediate use on sites that may be impacted by soil vapor intrusion into indoor air. The mitigation alternatives described in the Advisory are response actions designed to interrupt or monitor the vapor intrusion pathway and ensure public safety until volatile chemical concentrations in soil, soil gas, and/or groundwater are confirmed to have been restored to concentrations at or below levels considered safe for human exposure.

DTSC developed the Vapor Intrusion Mitigation Advisory primarily as a guide for DTSC staff. Other agencies, environmental consultants, responsible parties, community groups, and property developers may find the Advisory useful.

DTSC fully expects that users of the Advisory will identify areas for improvement. Additionally, new and innovative technologies may result in developing mitigation approaches not anticipated at the time of publication. DTSC will accept comments from interested parties for a six month period (ending October 31, 2009). At that time, DTSC will review and incorporate changes as needed. Please submit comments and suggestions for improvement of the Vapor Intrusion Mitigation Advisory to:

Kate Burger
Department of Toxic Substances Control
8800 Cal Center Drive
Sacramento, California 95826
kburger@dtsc.ca.gov
ACKNOWLEDGMENTS

The Department of Toxic Substance Control developed this Vapor Intrusion Mitigation Advisory (VIMA) under the direction of: Mr. Maziar Movassaghi, Acting Director and Deputy Director, Brownfields and Environmental Restoration Program; and Ms. Maureen Gorsen, former Director. Without their support, completion of this Advisory would not have been possible.

A document of this nature is never written in a vacuum. In writing this document, the authors relied extensively on pre-existing documents for content and design. Rather than burden the reader with endless document referrals within the text, the most often used reference materials include the following:

Many individuals have contributed their efforts in preparation of this Advisory. The following people had primary responsibility for writing:

- Dr. William Bosan, Staff Toxicologist;
- Ms. Lorraine Larsen-Hallock, Sr. Hazardous Substances Engineer;
- Ms. Dot Lofstrom, PG, Sr. Engineering Geologist;
- Mr. Tim Patenaude, PE, Sr. Hazardous Substances Engineer; and
- Dr. Kate Burger, PG, Sr. Engineering Geologist.

This Advisory has benefited greatly through input received from several sources, including:

- VIMA-at-large members, an internal technical advisory group focused on vapor intrusion mitigation;
- DTSC’s Proven Technologies and Remedies Team;
- Director’s Brownfields Revitalization Advisory Group; and
- Internal and external reviewers of draft versions of the Advisory.

In particular, the authors wish to thank the following individuals for their contributions to the development of this Advisory: Mr. Stewart Black, Mr. Paul Carpenter, Mr. Dan Gallagher, Dr. Debbie Oudiz, Mr. Roger Paulson, Mr. Chris Siembab, and Mr. Jesus Sotelo.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>Acronyms and Abbreviations</td>
<td>vi</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>viii</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose and Objectives</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Scope and Applicability</td>
<td>2</td>
</tr>
<tr>
<td>1.3 VIMA Relationship to Other Guidance Documents</td>
<td>4</td>
</tr>
<tr>
<td>1.4 DTSC Regulatory Authority</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Preemptive Applications of Vapor Intrusion Mitigation Approaches</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Overview and Organization</td>
<td>6</td>
</tr>
<tr>
<td>2.0 RISK-BASED DECISION MAKING FOR VAPOR INTRUSION SITES</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Evaluation of Vapor Intrusion Pathway</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Response Actions at Vapor Intrusion Sites</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Risk Management Considerations for Existing Buildings</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 Off-site Sources of Volatile Chemical Contamination</td>
<td>10</td>
</tr>
<tr>
<td>2.3.2 Ambient/Background Air Sources</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3 New Building Indoor Air Sources</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Risk Management Considerations for Future Buildings</td>
<td>11</td>
</tr>
<tr>
<td>2.4.1 Re-evaluate Indoor Air Risk Using Site-Specific Soil Parameters</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2 Adjust Development Plans to Avoid Vapor Intrusion Issue</td>
<td>11</td>
</tr>
<tr>
<td>2.4.3 Evaluate Whether Monitoring Alone Would Sufficient</td>
<td>11</td>
</tr>
<tr>
<td>2.4.4 Off-site Sources of Volatile Chemical Contamination</td>
<td>11</td>
</tr>
<tr>
<td>3.0 PUBLIC PARTICIPATION</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Considerations for Vapor Intrusion Sites</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Activities After Mitigation System Installation</td>
<td>13</td>
</tr>
<tr>
<td>3.3 Environmental Justice</td>
<td>14</td>
</tr>
<tr>
<td>3.4 Political Environment</td>
<td>14</td>
</tr>
<tr>
<td>3.5 Coordination with Other Agencies</td>
<td>15</td>
</tr>
<tr>
<td>4.0 VAPOR INTRUSION MITIGATION METHODS</td>
<td>16</td>
</tr>
<tr>
<td>4.1 Conceptual Model of Vapor Intrusion</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Overview of Mitigation Technologies</td>
<td>16</td>
</tr>
<tr>
<td>4.3 Sub-slab Venting and Sub-slab Depressurization Systems</td>
<td>17</td>
</tr>
<tr>
<td>4.3.1 Sub-slab Venting Systems</td>
<td>18</td>
</tr>
<tr>
<td>4.3.2 Sub-slab Depressurization Systems</td>
<td>19</td>
</tr>
<tr>
<td>4.4 Additions and Alternatives to Sub-slab Venting and Sub-slab</td>
<td>20</td>
</tr>
</tbody>
</table>
| Depressurization Systems
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>EVALUATION OF VAPOR INTRUSION MITIGATION APPROACHES</td>
<td>25</td>
</tr>
<tr>
<td>5.1</td>
<td>Screening of Mitigation Alternatives</td>
<td>25</td>
</tr>
<tr>
<td>5.2</td>
<td>Detailed Analysis of Mitigation Alternatives</td>
<td>25</td>
</tr>
<tr>
<td>5.3</td>
<td>Documentation of Detailed Evaluation Results</td>
<td>27</td>
</tr>
<tr>
<td>5.4</td>
<td>California Environmental Quality Act</td>
<td>28</td>
</tr>
<tr>
<td>6.0</td>
<td>VAPOR INTRUSION MITIGATION SYSTEM DESIGN</td>
<td>30</td>
</tr>
<tr>
<td>6.1</td>
<td>Design Considerations</td>
<td>30</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Overall Building Design</td>
<td>30</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Monitoring Devices and Alarms for Sub-slab Depressurization Systems</td>
<td>31</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Back Drafting and Short Circuiting of Sub-slab Depressurization Systems</td>
<td>31</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Integration of Mitigation and Subsurface Remediation Systems</td>
<td>32</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Incidental Removal Effects of SSD Systems</td>
<td>32</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Safety and Environmental Hazards</td>
<td>32</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Existing Buildings</td>
<td>33</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Other</td>
<td>34</td>
</tr>
<tr>
<td>6.2</td>
<td>Construction Quality Assurance/Quality Control Testing</td>
<td>34</td>
</tr>
<tr>
<td>6.3</td>
<td>Design Documents</td>
<td>35</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Design Document Content</td>
<td>35</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Supporting Documents</td>
<td>37</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Response Action Implementation Report</td>
<td>38</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Licensure Requirements</td>
<td>38</td>
</tr>
<tr>
<td>7.0</td>
<td>VAPOR INTRUSION MITIGATION SYSTEM IMPLEMENTATION</td>
<td>39</td>
</tr>
<tr>
<td>7.1</td>
<td>Property Owner/Occupant Impacts, Concerns and Responsibilities</td>
<td>39</td>
</tr>
<tr>
<td>7.2</td>
<td>Operation and Maintenance</td>
<td>39</td>
</tr>
<tr>
<td>7.2.1</td>
<td>General Performance Goals</td>
<td>39</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Performance Measures</td>
<td>39</td>
</tr>
<tr>
<td>7.2.3</td>
<td>General Guidelines for Monitoring</td>
<td>40</td>
</tr>
<tr>
<td>7.2.4</td>
<td>General O&M Requirements</td>
<td>42</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Contingency Plan</td>
<td>43</td>
</tr>
<tr>
<td>7.3</td>
<td>Implementation Considerations for Sub-slab Venting Systems</td>
<td>43</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Operation and Maintenance</td>
<td>43</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Monitoring</td>
<td>43</td>
</tr>
<tr>
<td>7.4</td>
<td>Implementation Considerations for Sub-slab Depressurization Systems</td>
<td>44</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Operation and Maintenance</td>
<td>44</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Monitoring</td>
<td>44</td>
</tr>
<tr>
<td>7.5</td>
<td>Document Submittals</td>
<td>44</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Sampling and Analysis Plans</td>
<td>44</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Design Document</td>
<td>45</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Interim Measure Construction/Final Installation Report</td>
<td>45</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Periodic Monitoring Reports</td>
<td>45</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6 Inspections</td>
<td>45</td>
</tr>
<tr>
<td>7.7 Five-Year Reviews</td>
<td>46</td>
</tr>
<tr>
<td>7.8 Enforceable Mechanisms</td>
<td>47</td>
</tr>
<tr>
<td>7.9 Financial Assurance</td>
<td>47</td>
</tr>
<tr>
<td>7.10 Access Agreements</td>
<td>47</td>
</tr>
<tr>
<td>7.11 Land Use Covenants and Institutional Controls</td>
<td>48</td>
</tr>
<tr>
<td>7.12 Emissions and Discharges</td>
<td>49</td>
</tr>
<tr>
<td>7.13 Coordination with Other Agencies</td>
<td>49</td>
</tr>
<tr>
<td>7.14 California Environmental Quality Act</td>
<td>50</td>
</tr>
<tr>
<td>7.15 Commingled Contaminants/Plumes</td>
<td>50</td>
</tr>
<tr>
<td>7.16 Multiple Responsible Parties</td>
<td>51</td>
</tr>
<tr>
<td>7.17 Termination of Building Controls</td>
<td>51</td>
</tr>
</tbody>
</table>

8.0 REFERENCES AND ADDITIONAL RESOURCES .. 52

GLOSSARY .. 54

Appendix A Example Design Basis/Criteria for Sub-slab Venting and Sub-slab Depressurization Systems .. 57
Appendix B Example of Design and Installation Requirements for Sub-slab Depressurization Systems .. 60
Appendix C Diagnostic Testing of Air Flow Characteristics Beneath Existing Buildings ... 62

Table 1 Risk Management Matrix for Vapor Intrusion 8
Table 2 Overview of Selected Vapor Intrusion Mitigation Technologies 23
Table 3 State and Federal Guidelines for Alternatives Evaluation 26
Table 4 Qualitative Comparison of Selected Vapor Intrusion Mitigation Technologies ... 29

Figure ES-1 VIMA Overview ... ix
Figure 1 Steps in DTSC Vapor Intrusion Guidance Process 3
Figure 2 Key DTSC Resources for Identifying and Mitigating Risk of Associated With Vapor Intrusion Into Indoor Air 5
Figure 3 Vapor Intrusion Mitigation Technologies .. 17
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB 422</td>
<td>California Assembly Bill 422</td>
</tr>
<tr>
<td>APCD</td>
<td>Air Pollution Control District</td>
</tr>
<tr>
<td>AQMD</td>
<td>Air Quality Management District</td>
</tr>
<tr>
<td>ASTM</td>
<td>ASTM International, originally known as the American Society for Testing and Materials</td>
</tr>
<tr>
<td>Cal/EPA</td>
<td>California Environmental Protection Agency</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CHHSL</td>
<td>California Human Health Screening Level</td>
</tr>
<tr>
<td>CMS</td>
<td>corrective measures study</td>
</tr>
<tr>
<td>CSM</td>
<td>conceptual site model</td>
</tr>
<tr>
<td>DTSC</td>
<td>California Department of Toxic Substances Control</td>
</tr>
<tr>
<td>EE/CA</td>
<td>engineering evaluation/cost analysis</td>
</tr>
<tr>
<td>EIR</td>
<td>environmental impact report</td>
</tr>
<tr>
<td>EJ</td>
<td>environmental justice</td>
</tr>
<tr>
<td>FS</td>
<td>feasibility study</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
</tr>
<tr>
<td>HDPE</td>
<td>high density polyethylene</td>
</tr>
<tr>
<td>HI</td>
<td>hazard index</td>
</tr>
<tr>
<td>HSAA</td>
<td>Hazardous Substance Account Act</td>
</tr>
<tr>
<td>HSC</td>
<td>California Health and Safety Code</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation, and air conditioning</td>
</tr>
<tr>
<td>HWCL</td>
<td>Hazardous Waste Control Law</td>
</tr>
<tr>
<td>IC</td>
<td>institutional control</td>
</tr>
<tr>
<td>IM</td>
<td>interim measure</td>
</tr>
<tr>
<td>ITRC</td>
<td>Interstate Technology and Regulatory Council</td>
</tr>
<tr>
<td>LARWQCB</td>
<td>Regional Water Quality Control Board, Los Angeles Region</td>
</tr>
<tr>
<td>LEL</td>
<td>lower explosive limit</td>
</tr>
<tr>
<td>LUC</td>
<td>land use covenant</td>
</tr>
<tr>
<td>NCP</td>
<td>National Contingency Plan</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Prevention Association</td>
</tr>
<tr>
<td>O&M</td>
<td>operation and maintenance</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PCE</td>
<td>tetrachloroethene</td>
</tr>
<tr>
<td>PPS</td>
<td>Public Participation Specialist</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
</tbody>
</table>
ACRONYMS AND ABBREVIATIONS (CONTINUED)

QA quality assurance
QC quality control

RAP remedial action plan
RAW removal action workplan
RCRA Resource Conservation and Recovery Act
RWQCB California Regional Water Quality Control Board

SMD submembrane depressurization
SSD sub-slab depressurization
SSV sub-slab venting
SVOC semi-volatile organic compound

TCE trichloroethene

USEPA U.S. Environmental Protection Agency

VC volatile chemical
VIMA *Vapor Intrusion Mitigation Advisory*
VOC volatile organic compound
The U.S. Environmental Protection Agency (USEPA) defines vapor intrusion as the migration of volatile chemicals from the subsurface into overlying buildings (USEPA, 2002). The California Department of Toxic Substances Control (DTSC) developed this Vapor Intrusion Mitigation Advisory (VIMA or Advisory) to assist with selecting, designing, and implementing appropriate response actions for sites where a potential vapor intrusion risk has been identified for occupants of existing or future buildings. The VIMA draws on: DTSC’s past experience with response actions that involve mitigation of vapor intrusion risk at sites with methane and other volatile constituents in the subsurface; industry mitigation standards for radon; and the experiences of other agencies with vapor intrusion.

This Advisory assumes that the steps in the most current version of the DTSC Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion into Indoor Air (Vapor Intrusion Guidance; DTSC, 2005a) have been followed, and mitigation measures have been recommended to protect human health. Thus, the project would currently be at Step 11 which is “mitigate indoor air exposure, monitoring, and implementation of engineering controls.” Hence, DTSC staff, stakeholders, and responsible parties may use the VIMA when 1) risk accorded to vapor intrusion has been estimated by modeling or indoor air sampling; and 2) mitigation has been proposed as part of a response action.

The goal of a vapor intrusion mitigation system is to mitigate the intrusion of subsurface contaminant vapors to indoor air and prevent human exposure at unacceptable levels. A vapor intrusion mitigation system is implemented to reduce contaminant entry into the building until the subsurface contamination is remediated or no longer poses a significant risk to human health. Remediation and mitigation are complementary components of a volatile chemical response action, addressing cleanup of subsurface contamination and impacts to the human receptor via the vapor intrusion pathway, respectively. DTSC does not consider a vapor intrusion mitigation system as a means of remediating the source of the subsurface contamination.

Scope and Objectives

As illustrated in Figure ES-1, the VIMA provides a framework that guides the reader through the decision process for 1) determining if mitigation is appropriate for the project site, 2) selecting a mitigation system that is protective of human health, and 3) ensuring that implementation is sustainable for the duration of mitigation. The objectives of the VIMA are to:

- Summarize the risk management framework where vapor intrusion mitigation decisions are made with technical soundness and consistency;
- Provide descriptions of various mitigation technologies to assist in response action selection;
Describe the mitigation technologies most likely to be chosen (sub-slab depressurization (SSD) or sub-slab venting (SSV) systems);

Provide guidance and design detail for installation of SSD and SSV systems and other mitigation technologies;

Provide guidance for establishing operation and maintenance (O&M) requirements for SSD and SSV systems and other mitigation technologies;

Provide guidance for public participation; and

Provide guidance for implementation measures and other considerations.

Risk-Based Decision Making

The specific action(s) taken to address vapor intrusion from a subsurface source will depend on the estimated risk and hazard levels. The VIMA identifies the following potential response actions, based on the risk and hazard levels, to address the vapor
intrusion pathway. The need for a specific response action should be made on a case-by-case basis using multiple lines of evidence, as established in the DTSC Vapor Intrusion Guidance.

No Further Action (Risk \(\leq 1 \times 10^{-6}; \text{HI} \leq 1 \)). If the estimated cancer risk is less than or equal to \(1 \times 10^{-6} \) and the noncancer hazard index (HI) is less than or equal to 1, no further action is necessary under the DTSC cleanup process.

Risk Management Decision (\(1 \times 10^{-6} < \text{Risk} \leq 1 \times 10^{-4}; \text{HI} > 1 \)). The point of departure for risk management decisions for cancer risk is \(1 \times 10^{-6} \) and for noncancer hazard is an HI greater than 1. Sites with risk or hazard from volatile chemicals in excess of these points of departure will require a response action and long-term environmental care. Potential actions taken based on a risk management decision could include: continued monitoring (e.g., soil gas, sub-slab or crawl space vapor, indoor air quality), installation of a vapor intrusion mitigation system (such as a SSV or SSD system), and source remediation.

Mitigation/Source Remediation (Risk > \(1 \times 10^{-4} \)). If the measured or predicted volatile chemical concentrations in indoor air, as contributed by subsurface vapor intrusion, are estimated to pose a potential long-term risk to human health above \(1 \times 10^{-4} \), both source remediation and vapor intrusion mitigation will be needed. The timing of this response action will depend on whether a building is existing or if future development will proceed before remedial goals are met. The decision to implement a mitigation action should be based on multiple lines of evidence to evaluate potential human health risks from vapor intrusion. DTSC must approve an appropriate response action decision document for any mitigation action (see Chapter 5).

The specific action(s) taken to address vapor intrusion will also depend on site-specific considerations, such as:

- Off-site sources of volatile chemical contamination;
- Ambient/background air\(^1\) sources;
- New building indoor air sources;
- For proposed buildings, potential adjustment of development plans to prevent or minimize vapor intrusion and indoor exposures by changing building placement relative to site contamination, or by changing building occupancy use; and
- For proposed buildings, a detailed evaluation of the vapor intrusion pathway (i.e., using site-specific parameters and multiple lines of evidence) to better quantify the estimated risk level and thus identify the appropriate response action.

\(^1\) For the purposes of the VIMA, ambient air is used to refer to the outdoor air in the neighborhood or community. The glossary of terms provides a more detailed definition of ambient air.
Public Participation Considerations

Public concerns associated with vapor intrusion will typically be greater than those associated with other media contamination because 1) simple avoidance techniques, such as elimination of exposure pathways, are not an option for impacts to the air people breathe and 2) involuntary exposure in one’s home, workplace, or school is potentially unsettling. Enhanced community outreach is an essential component when evaluating vapor intrusion at a site. The public participation process and communication should begin as soon as it is determined that vapor phase contaminants are present and a vapor intrusion evaluation is necessary. The communication process should continue after a vapor intrusion mitigation system is installed in a building and throughout its operation.

Informing occupants, schools, or business owners and employees that chemicals may have entered their buildings is a delicate and often difficult task. Public perception and concerns relative to impacts to air often go beyond vapor intrusion into homes, schools, daycare centers, or other buildings. The public may, for example, be concerned about all impacts to ambient air. DTSC should keep this perception in mind when developing communication strategies.

Communication and coordination with stakeholders may be critical to the development of a remediation and/or mitigation strategy. Proactively addressing competing needs may reduce project delays sometimes associated with stakeholder challenges.

Vapor Intrusion Mitigation Methods

Although several mitigation methods are available (see Chapter 4), the most commonly accepted mitigation techniques are SSV and SSD systems (USEPA, 2008b).

- A SSV system is typically designed to function by venting sub-slab soil gases or providing a pathway to allow soil gas to migrate to the exterior of the building rather than entering a building. SSV systems function by drawing in outside air to the sub-slab area, which dilutes and reduces volatile chemical concentrations.

- A SSD system is designed to function by continuously creating a lower pressure directly underneath a building floor relative to the pressure within a building. The resulting sub-slab negative pressure prevents soil gases from flowing into the building, thus reducing entry of volatile chemicals into the building.

Evaluation of Vapor Intrusion Mitigation Approaches

A range of mitigation approaches should be evaluated to determine which is the most feasible. The screening, detailed analysis and selection of the vapor intrusion mitigation technologies should be documented in an appropriate response action selection document (e.g., feasibility study, corrective measures study, remedial action plan, removal action workplan). DTSC prepares necessary documents to meet the requirements of the California Environmental Quality Act (CEQA) concurrently with the response action selection document.
Vapor Intrusion Mitigation System Design

All vapor intrusion mitigation systems should be designed in conformance with standard engineering principles and practices. The responsible party should submit design documents for the vapor intrusion mitigation system to DTSC for review and approval. Several factors should be considered in the mitigation system design, including:

- Coordination with active site remediation efforts;
- Source concentrations and type of volatile contaminants;
- Subsurface physical conditions (e.g., depth to water, soil properties, presence of utilities corridors);
- Integration of the system into the overall building design;
- Incorporation of monitoring devices and alarms;
- Potential for back drafting and short circuiting with SSD systems;
- Potential safety and environmental hazards (such as physical hazards to occupants, concentrations above the lower explosive limit, presence of asbestos);
- Incorporation of the design basis or design criteria;
- Construction quality assurance/quality control testing;
- Long-term maintenance and management requirements;
- Installation of sampling ports for sub-slab and/or crawl space vapor monitoring;
- For existing buildings, inspection of the building foundation for points of entry and quantification of building air flow characteristics; and
- For future developments, provisions to prevent the migration of vadose zone soil gas through utility trenches and channels.

Vapor Intrusion Mitigation Implementation

Implementation of a vapor intrusion mitigation system has several important considerations.

Operation and Maintenance. The vapor intrusion mitigation system should have an effective O&M Plan. Performance goals and measures, routine sub-slab or crawlspace monitoring, routine monitoring of operational parameters, periodic indoor air monitoring, and a contingency plan are key elements of the O&M Plan.

Reporting. The responsible party should submit vapor intrusion mitigation documents to DTSC for review and approval. Examples of these documents include design and construction/installation reports, sampling and analysis plans, a completion report, and periodic monitoring reports.
Inspections. Routine inspections should be conducted to ensure that site conditions have not changed and that there are no signs of degradation of above-ground mitigation system components. The inspection frequency is selected based on site-specific considerations.

Enforceable Mechanism. For O&M, DTSC must enter into an enforceable mechanism to address DTSC oversight and cost recovery. Examples of enforceable mechanisms include a corrective action consent agreement, consent order, consent agreement, voluntary cleanup agreement, and an O&M agreement.

Financial Assurance. The responsible party or site owner/operator should establish and maintain a financial assurance mechanism for costs associated with implementation of the vapor intrusion mitigation response action, O&M activities, land use covenant (LUC) compliance, five-year reviews, and DTSC oversight.

Access Agreement. An access agreement is obtained prior to entering a building for testing and/or construction. For future buildings, access issues should be addressed in the LUC.

Institutional Controls. DTSC identifies the institutional controls in the “Covenant to Restrict Use of Property, Environmental Restriction” (often referred to as a LUC). The responsible party should utilize a LUC with prescribed notifications, prohibitions, and engineering controls to ensure O&M and disclosure to future buyers and occupants.

Emissions and Discharges. The need for air permits and/or exhaust gas controls for the vapor mitigation method should be determined on a site-specific basis.

Coordination with Other Agencies. Coordination with one or more other State and local agencies that have jurisdiction will be needed for most sites requiring vapor intrusion mitigation.

Five-Year Reviews. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and State law, five-year reviews are required for a response action that results in hazardous substances remaining at the site above levels that would preclude unrestricted land use. The purpose of the five-year review is to ensure that the response action 1) remains protective of human health and the environment, 2) is functioning as designed, and 3) maintains appropriate O&M activities.

Termination of Building Controls. Subsurface remediation efforts will eventually reduce volatile chemical concentrations in soil, soil gas, and/or groundwater to levels that no longer require mitigation. At this point, the vapor intrusion mitigation system could be shutdown and/or removed and O&M requirements would cease. The implementation plan for the vapor intrusion mitigation system should include specific provisions for determining that subsurface remediation is complete and that the vapor intrusion mitigation system is no longer needed. A confirmation sampling and analysis plan for soil, soil gas, and/or groundwater should be a part of these provisions.
1.0 INTRODUCTION

The California Department of Toxic Substances Control (DTSC) developed this Vapor Intrusion Mitigation Advisory (VIMA or Advisory) to assist with selecting appropriate mitigation and implementation measures for sites with a vapor intrusion risk. The Advisory is to be used when mitigation for vapor intrusion has been proposed to address regulatory requirements. The Advisory discusses the approach which is applicable at any site where there is a vapor intrusion risk to occupants of existing or future buildings.

The United States Environmental Protection Agency (USEPA) defines vapor intrusion as the migration of volatile chemicals (VC) from the subsurface into buildings (USEPA, 2002). Volatile chemicals may include gases, volatile organic compounds (VOCs), select semivolatile organic compounds (SVOCs), select polychlorinated biphenyls (PCBs), and some inorganic analytes (such as elemental mercury and hydrogen sulfide). For the remainder of the VIMA, all of these volatile chemicals will be collectively referred to as VCs. If the primary constituent of concern is methane, the DTSC Advisory on Methane Assessment and Common Remedies at School Sites (DTSC, 2005b) should be consulted rather than the VIMA document.

Vapor intrusion should be evaluated initially by developing a conceptual site model (CSM) and proceeding forward with investigating and characterizing a site. An essential part of all site investigations, the CSM provides a conceptual understanding of the potential for exposure to hazardous chemicals at a site based on the sources of contamination, release mechanisms, transport media, and exposure pathways. A well-developed CSM should include all potential exposure pathways at the site, and should not be specifically limited to vapor intrusion. The Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion into Indoor Air (DTSC, 2005a; hereafter referred to as the DTSC Vapor Intrusion Guidance) provides the investigative steps for completing an initial vapor intrusion analysis, including guidance on developing a CSM. The Advisory-Active Soil Gas Investigations (DTSC/LARWQCB, 2003) describes soil gas sample collection and analytical techniques.

1.1 PURPOSE AND OBJECTIVES

The VIMA provides the decision-making guidance needed to effectively mitigate the intrusion of subsurface contaminant vapors to indoor air, and thus prevent human exposure at unacceptable levels. To that end, the VIMA draws on DTSC’s past experience with mitigating vapor intrusion risk at sites with methane and VCs in soil, as well as industry mitigation standards developed for radon in the 1980s.

DTSC developed the VIMA primarily as a guide for DTSC staff, but other agencies, environmental consultants, responsible parties, community groups, and property developers may use the Advisory. The VIMA provides guidance in selecting appropriate technologies in consultation with engineering and risk management professionals. The VIMA assists the project team with making informed, technically
sound decisions rather than providing detailed engineering protocols. However, the VIMA does provide certain generally applicable engineering details based on sound business practices.

The objectives of the VIMA are to:

- Summarize the risk management framework where vapor intrusion mitigation decisions are made with technical soundness and consistency;
- Provide descriptions of various mitigation technologies to assist in response action selection;
- Describe the mitigation technology most likely to be chosen (sub-slab depressurization (SSD) or sub-slab venting (SSV) systems);
- Provide guidance and design detail for installation of SSD and SSV systems and other mitigation technologies;
- Provide guidance for establishing operation and maintenance (O&M) requirements for SSD and SSV systems and other mitigation technologies;
- Provide guidance for public participation; and
- Provide guidance for implementation measures and other considerations.

1.2 SCOPE AND APPLICABILITY

This Advisory assumes that the steps in the most current version of the DTSC Vapor Intrusion Guidance have been followed, and mitigation measures have been recommended to protect human health. Thus, the project would currently be at Step 11 (see Figure 1) of the DTSC Vapor Intrusion Guidance which is “mitigate indoor air exposure, monitoring, and implementation of engineering controls.” The VIMA provides a framework that guides the reader through the decision process for 1) determining if mitigation is appropriate for the project site, 2) selecting a mitigation system that is protective of human health, and 3) ensuring implementation is sustainable for the duration of the exposure.

The reader should keep in mind the distinction between “mitigation” and “remediation” as used in this Advisory. The VIMA uses “remediation” to refer to those parts of a response action that address cleanup of soil, groundwater, or soil gas to response action-based goals, either by in situ or ex situ techniques. The purpose of remediation is to reduce the level of contamination in the environmental medium that is acting as a source of indoor air vapors. In contrast, “mitigation” as used in this Advisory, is applied to actions that reduce contaminant entry into building structures, remove contaminants after they have entered a building, or restrict residential use of a site. Thus, “mitigation” in this Advisory refers to those parts of a response action that address building controls. These controls may consist of installation of a SSV or SSD system, building pressurization, submembrane depressurization (SMD), or other building controls. Adjustment of the heating, venting, and air conditioning (HVAC) system is another
Figure 1
Steps in DTSC Vapor Intrusion Guidance Process*

*DTSC (2005a; revision pending), See Chapter 8 for Web-site link to current version.
alternative that may achieve the desired result. A complete list of current mitigation strategies is provided in Chapter 4.

It is also important to keep two other points in mind when using this Advisory. First, “response action”, as used herein, means hazardous waste facility closure, corrective action, remedial or removal action, or other response action to be undertaken pursuant to division 20 of the California Health and Safety Code. Other agencies, such as the Regional Water Quality Control Board (RWQCB), will conduct response actions in accordance with their particular regulations, such as the Water Code. Second, “buildings” include any structure in which current or future occupants could potentially contact contaminated indoor air.

The VIMA provides technically defensible and consistent approaches for mitigating vapor intrusion to indoor air, based upon the current understanding of the exposure pathway. The VIMA is not regulation, nor does it impose any requirements or obligations on the regulated community. Rather, it provides a technical framework and reference for addressing vapor intrusion mitigation. Other technically equivalent procedures exist, and this Advisory is not intended to exclude alternative approaches or methodologies. Hence, users of the VIMA are free to apply other technically sound approaches.

1.3 VIMA RELATIONSHIP TO OTHER GUIDANCE DOCUMENTS

Numerous guidance documents, both State and national, are available to assist in evaluating vapor intrusion. The VIMA is the third in the series of DTSC vapor intrusion guidance documents, and should be consulted after vapor intrusion has been identified as a potential concern and mitigation/remediation is recommended. In addition, the California Human Health Screening Levels (CHHSLs) were developed for VCs in soil gas that might migrate to indoor air. The CHHSLs were based on practical modeling for estimating indoor air concentrations from soil gas concentrations, standard exposure assumptions, and chemical toxicity values published by the USEPA and the California Environmental Protection Agency (Cal/EPA).

The following DTSC and Cal/EPA documents are available as guidance for investigating soil gas and for evaluating and mitigating the potential for vapor intrusion:

- Advisory – Active Soil Gas Investigations (DTSC/LARWQCB, 2003; revision pending);
- Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion into Indoor Air (DTSC Vapor Intrusion Guidance; DTSC, 2005a; revision pending);
- Vapor Intrusion Mitigation Advisory (this document); and
- Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties (Cal/EPA, 2005).

Figure 2 illustrates where the DTSC documents apply to the process identified in the DTSC Vapor Intrusion Guidance, including site characterization, evaluation of vapor...
intrusion, and remediation/mitigation. Web-site links to these DTSC and Cal/EPA documents are provided in Chapter 8. The guidance documents described above and on Figure 2 will provide an overall conceptual understanding of the vapor intrusion exposure pathway. The responsible parties involved in investigating or evaluating sites with vapor intrusion concerns should review these guidance documents. Chapter 8 includes a list of other useful resources and website links.

1.4 DTSC REGULATORY AUTHORITY

The California legislature passed Assembly Bill 422 (AB 422) in October 2007, amending Section 25356.1.5 of the California Health and Safety Code, and adding Section 13304.2 to the Water Code. AB 422 requires that the exposure assessment of any health or ecological risk assessment prepared in conjunction with a response action taken, or approved pursuant to the California Superfund Act, include the development of reasonable maximum estimates of exposure to VCs that may enter structures that are on the site, or that are proposed to be constructed on the site, and may cause exposure due to accumulation of VCs in the indoor air of these structures.
1.5 PREEMPTIVE APPLICATIONS OF VAPOR INTRUSION MITIGATION APPROACHES

The responsible party may propose vapor intrusion mitigation as a preemptive solution for a perceived rather than actual threat, even in cases where DTSC is not requiring mitigation. The following scenarios provide examples in which preemptive solutions might be applied:

- A site where no building yet exists and fate and transport modeling indicates an acceptable risk (determined to be at or less than a 1×10^{-6} risk level or a hazard index (HI) of 1) to future building occupants, but a developer is interested in installing vapor intrusion mitigation despite the apparent low risk, as a prudent measure.

- An existing building overlies, or is in close proximity to, subsurface contamination, but the calculated risk level is less than or equal to 1×10^{-6} or a HI less than or equal to 1, and DTSC does not require mitigation.

- A site that is currently not impacted by a groundwater plume, but that may be impacted in the future.

In these instances, the project proponent may choose to follow the DTSC remedial process discussed in Chapter 5, even though the project does not involve DTSC review. Additionally, much of the information provided in the Advisory is general in nature, and may be helpful in the design and implementation of preemptive vapor intrusion mitigation measures. However, for such preemptive applications, DTSC will neither approve nor enforce the mitigation, and will not be involved in the O&M for the mitigation system.

1.6 OVERVIEW AND ORGANIZATION

The VIMA provides a framework for selecting an appropriate mitigation approach at sites with a vapor intrusion risk. This document includes questions as well as recommendations that should lead to logical and informed decisions resulting in the protection of human health.

Chapter 2 is a discussion of managing risk to current and future building occupants from vapor intrusion.

Chapter 3 provides a framework for public participation-related activities, particularly with respect to vapor intrusion evaluation and mitigation in existing residential developments.

Chapter 4 discusses vapor intrusion mitigation methods with a focus on SSV and SSD systems.

Chapter 5 describes the process for evaluating and selecting the appropriate mitigation system.

Chapter 6 describes design considerations for vapor intrusion mitigation approaches.
Chapter 7 is a discussion of various aspects to consider during implementation, such as institutional controls, O&M, inspections, five-year reviews, financial assurance, and termination of building controls.

Chapter 8 includes a list of technical resources available for additional study and the references cited in the VIMA.
2.0 RISK-BASED DECISION MAKING FOR VAPOR INTRUSION SITES

If VC contamination is suspected based on the site history, the early stages of project scoping should address the potential for vapor intrusion and the consideration of vapor intrusion mitigation. This chapter discusses the risk management considerations associated with evaluating and responding to potential vapor intrusion.

2.1 EVALUATION OF VAPOR INTRUSION PATHWAY

If VCs are present in the subsurface at a site, the vapor intrusion pathway should be evaluated using the step-wise approach described in the DTSC Vapor Intrusion Guidance. As illustrated in Figure 1, different steps apply to existing and proposed buildings. Refer to the DTSC Vapor Intrusion Guidance for a detailed discussion of Steps 1 through 10. The VIMA provides detailed discussion of Step 11.

2.2 RESPONSE ACTIONS AT VAPOR INTRUSION SITES

Table 1 summarizes the basic decision logic used to: 1) evaluate subsurface contaminant data (e.g., soil gas and/or shallow groundwater) and/or indoor air sampling data at potential vapor intrusion sites; and 2) identify an appropriate response action. The need for a specific response should be made on a case-by-case basis using multiple lines of evidence as established in the DTSC Vapor Intrusion Guidance.

Table 1
Risk Management Matrix for Vapor Intrusion

<table>
<thead>
<tr>
<th>Indoor Air Risk/Hazard</th>
<th>Response(s)</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk < 1x10^{-6}</td>
<td>None</td>
<td>No Further Action</td>
</tr>
<tr>
<td>Hazard Index ≤ 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x10^{-6} < Risk ≤ 1x10^{-4}</td>
<td>Risk Management Decision</td>
<td>Monitoring; Possible Mitigation² Possible Source Remediation²</td>
</tr>
<tr>
<td>Hazard Index > 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk > 1x10^{-4}</td>
<td>Mitigation Source Remediation</td>
<td>Vapor Intrusion Mitigation System³ Source Remediation³</td>
</tr>
</tbody>
</table>

1 Estimated based on multiple lines of evidence, as established in the DTSC Vapor Intrusion Guidance.

2 Mitigation is intended to reduce the entry of VCs from a subsurface source into building air and should be conducted in conjunction with source remediation. DTSC does not consider a vapor intrusion mitigation system as a means of remediating the source of the subsurface contamination.

3 Both vapor intrusion mitigation and source remediation should be implemented for sites in this risk range. However, site-specific conditions (such as where the source of contamination is located off-site) may necessitate use of mitigation as the long-term measure.
No Further Action (Risk ≤ 1 x 10^{-6}; HI ≤ 1). The point of departure for risk management decisions for cancer risk is 1 x 10^{-6} and for noncancer health hazards is a HI of 1. If the estimated cancer risk and hazard are less than these points of departure, as indicated by multiple lines of evidence, no further action is necessary. See Section 1.5 for discussion of sites that choose to apply vapor intrusion mitigation as a preemptive measure.

Risk Management Decision (1 x 10^{-6} < Risk < 1 x 10^{-4}; HI > 1). Sites with a risk or hazard from VCs in excess of the point of departure require a response action and long-term environmental care. Potential actions taken based on a risk management decision could include:

- continued soil vapor monitoring,
- continued indoor air quality monitoring,
- mitigation, and
- VC source remediation.

The risk management decision will be made on a site-by-site basis by DTSC with appropriate input from the project proponent. The decision should take into account both site-specific and chemical-specific data. Multiple lines of evidence, such as collection of additional site-specific data, should be used to decrease the uncertainty in evaluating vapor intrusion at a site. Experience has shown that much of this uncertainty arises from spatial and temporal variability in sampling data and that the uncertainty can be reduced by additional data collection. Chemical-specific information to be evaluated would include: 1) toxicity endpoints and target-organs affected for noncarcinogenic chemicals; 2) whether a chemical is a known human carcinogen or a suspected carcinogen; and 3) the uncertainties associated with the derivation of the toxicity criteria. The above considerations will allow for a better-informed risk management decision process.

Mitigation/Subsurface VC Source Remediation (Risk > 1 x 10^{-4}). Mitigation and source remediation will be needed if the potential long-term risk to human health, as contributed by vapor intrusion, is estimated to be above 1 x 10^{-4}. The timing of this response action will depend on whether the building is existing or if future development will proceed before remedial goals are met. Chapters 4, 5, 6 and 7 discuss various aspects of mitigation actions to address the vapor intrusion pathway. The responsible party should submit an appropriate response action decision document for any mitigation action conducted as part of the cleanup process to DTSC for review and approval (see Chapter 5). The decision to implement a mitigation action should be based on sufficient site characterization data to evaluate potential human health risks from vapor intrusion.

Vapor intrusion mitigation is intended to minimize subsurface VC entry to the indoor air pathway and is not intended to be a sole remedial alternative for a VC contaminated site. For most sites in this risk range, remediation will be required to address the subsurface source of vapor contamination. However, based on site-specific considerations, mitigation may become the long-term measure, especially where removal of VCs may not be technically feasible (such as where the VC source is located off-site).
2.3 RISK MANAGEMENT CONSIDERATIONS FOR EXISTING BUILDINGS

2.3.1 Off-site Sources of Volatile Chemical Contamination

Soil gas plumes may be the result of off-site sources of VC contamination in soil gas or shallow groundwater. The off-site source may be part of a larger, regional contamination issue. The off-site source of contamination may or may not currently be under the oversight of a regulatory agency for investigation and management. If the soil gas plume originates from off-site sources, incorporating vapor intrusion mitigation into the existing building may be the only viable option, especially if the off-site source is regional in nature and remediation of off-site sources may be impractical or not achievable in the near future.

Migration of the off-site plume onto the site may also be a concern. While the off-site plume may not currently have adversely affected the site, the plume may pose a future vapor intrusion risk. In this case, the plume should be evaluated using appropriate plume modeling techniques.

2.3.2 Ambient/Background Air Sources

For urban areas, many VOCs are ubiquitous in ambient, outdoor air. Common VOCs in ambient air include benzene, trichloroethene (TCE), and tetrachloroethene (PCE). While measured indoor air concentrations may pose a potential long-term health risk, these concentrations may also be identical to ambient levels. Therefore, source removal or vapor intrusion mitigation may not reduce the indoor air concentrations of such ubiquitous VCs.

Consistent with the DTSC Vapor Intrusion Guidance, ambient/background air samples should be collected to determine if ubiquitous VCs are contributing to the measured indoor air concentrations. A sufficient number of outdoor air samples should be collected to provide a meaningful comparison between indoor air and outdoor air concentrations. This comparison must also be considered in terms of the cumulative indoor air risk associated with the target VCs. Specific risk considerations would include the exposure scenario being evaluated (e.g., residential, industrial/commercial, school-based) and the risk associated with target VCs measured in outdoor air for the appropriate exposure scenario.

In addition to collecting background air samples, evaluating the ratio between concentrations of VCs in the subsurface and concentrations of VCs in indoor air may help in distinguishing contributions from background air versus vapor intrusion from the subsurface. Air quality data collected from monitoring stations within a local air management district provides secondary evidence for distinguishing vapor intrusion from other sources.

Because of the high cost associated with conducting indoor air studies, sufficient numbers of samples may not be available to conduct rigorous statistical evaluations. Given such data limitations, the comparison may often be qualitative in nature and will require a risk management decision regarding the need for further action or mitigation.
2.3.3 New Building Indoor Air Sources

VC concentrations measured in indoor air could originate from off-gassing of building materials rather than from vapor intrusion. As an example, DTSC has conducted an indoor air quality investigation at a newly constructed school building overlying a TCE plume. Elevated levels of vinyl chloride (a potential degradation product of TCE) were detected in most of the classrooms and ultimately were determined to be from unidentified indoor sources.

2.4 RISK MANAGEMENT CONSIDERATIONS FOR FUTURE BUILDINGS

2.4.1 Re-evaluate Indoor Air Risk Using Site-Specific Soil Parameters

Additional data collection may be required 1) to better define the lateral and vertical extent of VC contamination and 2) to refine the predicted indoor air risk based on site-specific soil parameters. Site-specific soil parameters are particularly important because they can reduce the predicted indoor air risk compared to the risk estimated using screening-level default parameters. Refer to the DTSC Vapor Intrusion Guidance for further details.

2.4.2 Adjust Development Plans to Avoid Vapor Intrusion Issue

If sufficient data exists, soil gas iso-concentration contours and geological cross-sectional diagrams may be constructed for the planned building location. If the soil gas plume is well characterized spatially, the development plans can be adjusted so that buildings are not constructed immediately over, and are constructed a sufficient distance away from the plume, thus eliminating the vapor intrusion pathway. In some cases, risk isopleths could be constructed from concentration data to better illustrate areas where inhalation health risks should preclude building construction or sensitive land uses.

2.4.3 Evaluate Whether Monitoring Alone Would Be Sufficient

If the VC plume does not impact or only impacts a fraction of the proposed building foundation, the estimated indoor air risks may not be as significant and only continued soil gas monitoring may be required. This circumstance is best evaluated by considering the site plans and layout of proposed structures together with the plume maps (e.g., VC iso-concentration contours, geological cross-sectional diagrams).

2.4.4 Off-site Sources of Volatile Chemical Contamination

The same off-site plume issues pertaining to existing buildings (Section 2.3.1) also apply to future buildings. If the soil gas plume is coming from off-site sources, incorporating vapor mitigation as part of the building design is an option, especially if the off-site source is regional in nature and source remediation is impractical or not achievable in the near future.
3.0 PUBLIC PARTICIPATION

Community outreach is an essential component of the investigation and remediation of any contaminated site, but is particularly critical when dealing with potential or confirmed soil vapor intrusion to indoor air. Placement of this public participation discussion as an early VIMA chapter is intended to underscore the vital importance of keeping stakeholders informed on sites with vapor intrusion issues.

The public participation process and communication with stakeholders should begin as soon as it is determined that vapor phase contaminants are present and a vapor intrusion evaluation is necessary. As with any contaminated site, DTSC’s Public Participation Policy and Procedures Manual (DTSC, 2003) should be followed and a site-specific community plan and/or strategy should be developed. Sample public participation documents (such as a fact sheet, community profile, community assessment letter, survey questionnaire, and Public Participation Plan) are available. Face-to-face meetings with those stakeholders who live, work, or otherwise occupy the buildings under investigation, and in which mitigation measures are needed, are essential. DTSC anticipates developing public participation strategy guidelines specific to vapor intrusion as an addendum to the DTSC Vapor Intrusion Guidance.

Vapor intrusion concerns are unique as compared to other exposure pathways. Simple avoidance techniques, such as eliminating exposure pathways, are not an option for impacts to the air people breathe in their homes, schools, or workplaces. Hence, the scope of public participation activities at potential or known vapor intrusion sites likely will require more extensive strategy and outreach than is applied at other types of contaminated sites. Minimum public participation requirements can cause unnecessary delays and foster public distrust. Thus, it is recommended that the public is engaged as early as possible and throughout the process and are fully informed prior to any interim or final response action selection stage. For example, prior to response action selection, the public participation process should ensure that the affected stakeholders become familiar with the requirements for installation, institutional controls, financial assurance, five-year reviews, O&M, and monitoring of a vapor intrusion mitigation system.

3.1 CONSIDERATIONS FOR VAPOR INTRUSION SITES

Vapor intrusion issues (including mitigation measures) may generate heightened public concerns for the following reasons:

- Fear related to having an unknown and unseen chemical presence in one’s home, work place, or a child’s school;
- The heightened awareness of the general public (both nationally and state-wide) regarding vapor intrusion issues;
- The relatively complicated nature of the vapor intrusion exposure, when compared to more direct contaminant exposure routes (e.g., the physical exposure or ingestion of chemicals in contaminated soil or groundwater);
The unknowns associated with the evolving science of investigating, evaluating, and mitigating exposures related to vapor intrusion;

Public perception and concerns relative to VC impacts, which may go beyond vapor intrusion into homes or buildings (such as impacts to ambient air and impacts to homegrown fruits and vegetables);

Potential health risk from long-term past exposure over which DTSC may have had little control; and

In the event that indoor air VC levels are documented to be extremely high, mitigation measures may not be adequate for continued occupation of the building. Temporary or permanent relocation may become necessary, which would require even greater sensitivity, communication, and planning.

When people have been or may be exposed to contamination, providing them with accurate and timely information about those exposures is extremely important. This information should include details about the types of chemicals, the levels of exposure, and possible health effects from those exposures. In addition, information should include details about the planning and progress of the investigation, mitigation, and remediation.

Informing occupants or business owners that chemicals may have entered their buildings is a delicate and often difficult process. In the case of businesses, communication with both the business owner/employer and employees will be required. Special challenges exist as a result of employers not wanting to alarm their employees versus the employee’s need to know.

Likewise, if schools are potentially impacted, the interests, concerns, and communication needs of school administrators, teachers, students, and parents may be disparate. Skillful intervention and planning is critical to successful investigation and mitigation measure implementation. Face-to-face meetings in small groups or individually may be necessary prior to installation of any mitigation measures in homes, businesses, or schools. In the case of schools, presentations to school boards, meetings with principals/superintendents, and outreach to parents and teachers will require exceptional planning and expertise. Consultation with the DTSC Brownsfields and Environmental Restoration Program should be initiated.

Project teams addressing vapor intrusion investigations should include a DTSC Public Participation Specialist (PPS) trained to deal with community concerns. The PPS should meet regularly with the project team to advise stakeholders of community concerns and to develop site-specific communication strategies.

3.2 ACTIVITIES AFTER MITIGATION SYSTEM INSTALLATION

The public participation process continues after installation of a vapor intrusion mitigation system in a building. One aspect of this process is to provide an information package to the building owner, tenants, and other interested parties to facilitate their understanding of the system operation, maintenance, and monitoring. This package should include the following:
A description of the mitigation system and its basic operating principles;
How the owner or tenant can check that the system is operating properly;
How the system will be maintained and monitored and by whom;
A list of appropriate actions for the designated person to take if the system
warning device or indicator (such as a pressure gauge or alarm) indicates system
degradation or failure; and
Contact information (such as names and telephone numbers) if the owner or
tenant has questions, comments, or concerns.

The building owner should also receive the following information:

- Any building permits required by local codes;
- Copies of contracts and warranties;
- A description of the proper operating procedures of any mechanical or electrical
 system, including manufacturer's operation and maintenance instructions and
 warranties;
- A detailed description (and appropriate training regarding) monitoring for the
 vapor intrusion mitigation system, including responsibilities, funding, and
 emergency responses;
- O&M Plan and enforceable agreement;
- Land use covenant (LUC);
- Financial assurance requirement; and
- Five-year review requirement.

3.3 ENVIRONMENTAL JUSTICE

If the community impacted by a contaminated site is designated as having
environmental justice (EJ) concerns, applicable DTSC policy should be consulted and
incorporated into the overall public participation strategy. Information on DTSC policy,
fact sheets, and other useful information concerning EJ can be found at the following
Web site: http://www.dtsc.ca.gov/GetInvolved/env_justice_policies.cfm and in the *Public
Participation Policy and Procedures Manual*. For example, evaluation and identification
of community language needs other than English is crucial. Consideration that
response actions selected for EJ communities are at least equivalent to those selected
for other communities is also critical.

Local cities or counties may also have EJ resolutions, policies, or other information
which should be considered in the development of the site-specific public participation
strategy.

3.4 POLITICAL ENVIRONMENT

The political environment surrounding a site may include competing interests of the
property owner, responsible party, residents, general public, and community leaders
(e.g., elected officials, church leaders, and schools). EJ concerns, political pressures, and economic needs may also be present. The identification of key stakeholders should occur early, should be maintained in the process, and included as part of the community Public Participation Plan and strategy. Communication and coordination of competing interests may be critical to the development of a remediation and/or mitigation strategy that meets public health protection goals that are defensible and implementable. Addressing and monitoring such competing needs may reduce project delays sometimes associated with stakeholder challenges.

3.5 COORDINATION WITH OTHER AGENCIES

Where multiple agencies are involved, DTSC should come to an agreement with these agencies to ensure that the project strategies are met and that community outreach is coordinated to the extent feasible. In cases where oversight authority may be overlapping or redundant, an agreement (such as a Memorandum of Understanding) should be made between the applicable entities, with designation of a single oversight authority. In part, this agreement should address the public participation strategy for the site.
4.0 VAPOR INTRUSION MITIGATION METHODS

DTSC recommends that vapor intrusion mitigation be implemented as an interim response action until VC concentrations in soil, soil gas, or groundwater are confirmed to be at acceptable levels. The goal of a vapor intrusion mitigation system is to interrupt the pathway between the source of the vapors and building occupants until remedial goals in the subsurface are met. As discussed in Section 1.2, remediation of the subsurface is the primary means by which remedial goals are achieved at a site, rather than the vapor intrusion mitigation system. For most sites, remediation and mitigation are complementary components of a VC response action, addressing cleanup of subsurface contamination and impacts to the human receptor, respectively. Where source removal is impracticable, the use of engineering controls may be the most feasible long-term response action (see Chapter 2). The response action decision document should clearly describe the integration of the remediation and mitigation components (see Chapter 5).

4.1 CONCEPTUAL MODEL OF VAPOR INTRUSION

VCs can enter a building through entry points such as cracks or perforations in slabs or basement floors and walls, openings around sump pumps, elevator shafts, or where pipes and electrical wires go through the foundation.

Typically, the air pressure within a building is somewhat less than the atmospheric pressure surrounding the building. This difference in pressure is caused by thermal differences between indoor air and surrounding soils, wind and barometric changes, and stack effects of chimneys and flues. Thus, the negative pressure differential present in most buildings may cause vapor-phase contaminants to migrate from the subsurface into the structure, and it is this pathway that needs to be interrupted.

4.2 OVERVIEW OF MITIGATION TECHNOLOGIES

Table 2 identifies various mitigation technologies for addressing vapor intrusion into buildings as well as the specific applications, advantages, and disadvantages of each technology. Figure 3 illustrates the technologies that are suitable to existing and future buildings and appropriate for the building usage. Well-established techniques developed for mitigating exposures to radon and methane are the basis for many vapor intrusion mitigation technologies. These techniques and associated guidance are appropriate for VCs because the vapors may enter a building in the same manner as radon and methane.

Because SSD and SSV systems are the most commonly used mitigation techniques (USEPA, 2008b), the VIMA emphasizes these systems over other technologies. The purpose of this emphasis is to relieve the project proponent of providing an in-depth analysis of all types of mitigation systems, and to easily select either a SSD or SSV system when mitigation is needed. However, the VIMA does not preclude other approaches (such as those described in Section 4.4) from being proposed. Depending on site-specific characteristics, one of the alternate mitigation strategies may be a better
fit at an individual site, rather than a SSD or SSV system. Additional, acceptable approaches may be developed in the future.

4.3 SUB-SLAB VENTING AND SUB-SLAB DEPRESSURIZATION SYSTEMS

The USEPA recommends that the model building standards and techniques for radon control in new residential buildings constructed on basement and slab-on-grade foundations include: installing a layer of permeable sub-slab material; sealing the joints, cracks, and other penetrations of slabs and foundation walls; providing a soil-gas retarder (sub-slab liner) beneath floors; and installing either a SSV or SSD system. As described further below, the distinction between the two systems is that a SSD system is designed to mitigate vapor intrusion by achieving measurable, continuous sub-slab pressure reduction and a SSV system is designed to reduce or dilute sub-slab VC concentrations.

Sub-slab liners are used with both SSV and SSD systems. The sub-slab liner is an integral component of a SSV system (as described further in Section 4.3.1). DTSC considers a sub-slab liner to be a safety factor for a SSD system for instances in which the system is shutdown for repair (see Section 4.3.2). Additional discussion of sub-slab liners is provided in Section 4.4.

4.3.1 Sub-Slab Venting Systems

A SSV system is typically designed to function by venting sub-slab soil gases or providing a pathway to allow soil gas to migrate to the exterior of the building rather than
entering a building. SSV systems function by drawing in outside air to the sub-slab area, which dilutes and reduces VC concentrations. SSV systems rely on natural thermal and wind effects to withdraw soil gases from the sub-slab venting layer to dilute and reduce VC concentrations to a protective level. SSV systems are commonly used in new construction sites as a preemptive measure against vapor intrusion (see Section 1.5).

SSV systems usually employ a layer of venting material (sand or pea gravel) below the floor slab to allow soil gas to move laterally under natural diffusion or pressure gradients to a collection piping system for discharge to the atmosphere. SSV systems include a sub-slab liner that is installed on top of the venting layer. To the extent that the liner is intact, the sub-slab liner aids venting of sub-slab soil gas via collection pipes rather than upward into the building to the extent that the liner is intact.

In a SSV system, vapors are directed to the edge of the foundation by perforated collection pipes that are installed in the venting layer, beneath the slab, or at the periphery of the foundation. Usually, the collection pipes are connected to a main header point that runs up through or along the inner or outer building wall and exhausts above the roofline. The vertical collection pipe may be equipped with a sampling port and the discharge point fitted with a non-restricting, screened rain guard to prevent precipitation and debris from entering the piping system. Alternatively, SSV can be implemented by actively blowing ambient air into the venting layer beneath a building. Installation of a vertical inlet pipe system within or next to the building allows fresh air to enter into the gravel blanket or sub-slab zone, which results in diluted or reduced VC concentrations.

Because of the extensive foundation work involved in the installation, SSV systems are generally easier to install in new construction rather than existing buildings. SSV systems may not be appropriate in areas with a high groundwater table or surface drainage problems because the venting system will not function properly if continuously saturated with water.

The SSV system may cause the air pressure below the slab may be reduced somewhat compared with that of the building interior, particularly near the vent pipe intake in the venting layer and during atmospheric conditions favorable for SSV. However, there is typically no design objective or requirement in a SSV system to maintain a lower pressure of any given magnitude below the floor.

SSV systems are monitored by measuring VC concentrations in sub-slab soil gas, or by measuring concentrations of indoor air. A sampling port within the vertical collection pipe or in the horizontal vent pipes below the floor should be included as part of the SSV design. Measuring VC concentrations in sub-slab soil gas will verify that the SSV system is providing adequate dilution or removal of sub-slab VCs such that vapor intrusion is not occurring at a significant level. To demonstrate SSV system effectiveness using sub-slab soil gas testing, a reasonable goal may be to reduce VC concentrations in sub-slab soil gas to less than 100 times the acceptable indoor air level, based on an attenuation coefficient of 0.01 (DTSC, 2005a) between sub-slab soil gas and indoor air in the un-mitigated building.
SSV systems result in less depressurization and lower air flow rates than SSD systems. In most buildings, SSV systems are unlikely to perform as well as SSD systems, and therefore may not be an appropriate technology in areas with high concentrations of contaminant vapors. SSV systems should always be designed so that they can be upgraded to a SSD system. Criteria should be developed prior to construction that clearly establish when SSV systems need to be upgraded, such as measuring VC concentrations in sub-slab soil gas or indoor air at concentrations above project goals.

4.3.2 Sub-Slab Depressurization Systems

SSD systems are applicable for slab-on-grade building construction. For buildings with crawl spaces, a SMD system is more appropriate (see Section 4.4). A SSD system is designed to function by continuously creating a lower pressure directly underneath a building floor relative to the pressure within a building. The resulting sub-slab negative pressure inhibits soil gases from flowing into the building, thus reducing VC entry into the building. VCs caught in this negative pressure field are collected and piped to an ambient air discharge point. The depressurization under the slab is typically accomplished with a motorized blower. The blower draws air from the soil beneath a building and discharges it to the atmosphere through a series of collection and discharge pipes. Model Standards and Techniques for Control of Radon in New Residential Buildings (USEPA, 1994a) defines SSD technology as “a system designed to achieve lower sub-slab air pressure relative to indoor air pressure by use of a blower-powered vent drawing air from beneath the slab.”

DTSC considers a sub-slab liner to be an appropriate, redundant feature for the SSD system for instances in which the blower fails. Additionally, the liner may increase the efficiency of the system so that a smaller blower is required.

The sustained effectiveness of SSD systems can be adequately evaluated by monitoring the blower operation and the reduced pressure beneath the floor, as described in more detail in Chapter 7. Thus, regardless of the mechanism for creating the reduced pressure, a SSD system can be effectively monitored through routine pressure monitoring once an adequate demonstration of the mitigation system effectiveness has been established. The pressure monitoring requirements for a SSD system are generally easier and less costly to implement routinely compared to monitoring VC concentrations in a SSV system.

A SSD system has some of the attributes of a SSV system, in that it may also reduce VC concentrations in sub-slab soil gas through venting. However, the magnitude of VC concentration reductions in sub-slab soil gas are less critical than for SSV systems, because the SSD system is designed to mitigate vapor intrusion by maintaining a lower pressure below the building floor.

In existing structures, SSD systems entail drilling or cutting one or more holes in the existing slab, removing a quantity of soil from beneath the slab to create an open hole or suction pit, and placing vertical suction pipes into the holes. The suction pipes are manifolded together and routed to the blower and discharged so that the soil gas can be drawn from just beneath the slab. An operating SSD system will induce indoor air to
flow down into the subsurface through entry points such as cracks and openings. Soil gases from beneath the slab will be collected and vented to the atmosphere at a height well above the outdoor breathing zone and away from windows and air supply intakes. More details on SSD systems can be found in various USEPA guidance documents on radon, and in American Society of Testing and Materials International (ASTM) guidance documents (ASTM, 2007ab).

4.4 ADDITIONS AND ALTERNATIVES TO SUB-SLAB VENTING AND SUB-SLAB DEPRESSURIZATION SYSTEMS

Other remedies in addition to, or as alternatives to, SSD and SSV systems are available to address site-specific conditions. A project proponent may propose an alternative technology for evaluation by DTSC. The selected alternative technology should achieve a balance between indoor air quality issues and compliance with title 24, part 6, of the California Code of Regulations for energy efficiency. The project proponent may also propose technologies not specifically described in VIMA for DTSC’s consideration.

Sealing Cracks and Openings. Cracks and openings in the building foundation are the primary routes of vapor entry, rather than diffusion through the concrete slab itself. An exception would be very thin slabs or sites where soil gas concentrations are very high. Thus, an important first step in preventing vapor intrusion is to seal cracks in the floors and walls of a building, as well as gaps around utilities, floor drains, dry utilities, sumps, elevator shafts, and other piping systems. Sealing cracks and openings should not be considered as a standalone action, but should be completed as a preliminary step in conjunction with other mitigation strategies.

Sub-slab Liners (Passive Membranes or Vapor Barriers). Sub-slab liners are materials or structures installed below a building to block the entry of vapors. These liners have traditionally been used to prevent moisture from accumulating behind drywall walls, thus giving rise to the name “vapor barrier.” Sub-slab liners ideally cause soil gas that would otherwise enter the building to migrate laterally beyond the building footprint. However, in practice, sub-slab liners are not able to completely eliminate vapor intrusion due to the likelihood of punctures, perforations, tears, and incomplete seals. Thus, sub-slab liners by themselves are not an acceptable vapor intrusion mitigation system to DTSC for indoor air risks greater than or equal to 1×10^{-6} and a HI greater than or equal to 1 (see Chapter 2 for further discussion of the risk management framework), and should be used only in combination with a SSV, SSD, or SMD system.

Submembrane Depressurization System. For a SMD system, a membrane (liner) is used as a surrogate for a slab to allow depressurization. A liner covers the exposed dirt surface of a crawl space while the depressurization system withdraws soil gas from beneath the liner and prevents its intrusion into the overlying space. The edges of the foundation wall must be well sealed, and the liner must be loose enough to prevent tearing under stress. Periodic inspection is required because liners can be easily damaged or lose their seals at the edges. SMD is effective for retrofitting buildings with crawl spaces.
Building Pressurization. Building pressurization involves adjusting the building HVAC systems or installing a new system to maintain a positive pressure indoors relative to the sub-slab area. This approach is more commonly used for commercial buildings and can be cost effective if the existing HVAC system already maintains a positive pressure. Having to increase the pressure will result in larger energy costs, particularly if significant heating and cooling is required. Positive pressurization of buildings is practicable only when the building is relatively tight, with few doors or other openings. Therefore, warehouses with large bay doors are not candidates for positive pressurization. DTSC will consider HVAC alteration as a response action for existing commercial/industrial buildings on a case-by-case basis, particularly if the HVAC system was not operating pursuant to current building codes and energy efficient codes and/or requirements (title 24, part 6 of the California Code of Regulations). However, DTSC does not consider building pressurization to be an appropriate mitigation technology for residential structures.

Indoor Air Treatment. This method directs air within the structure to air pollution control equipment to remove toxic air contaminants from the building interior rather than preventing entry into a building. DTSC is critical of this method for several reasons. Indoor treatment is not a proven, developed technology available for widespread application to buildings used for commercial or industrial purposes. Other drawbacks to this method are that it encourages collection of contaminant vapors within the structure and is dependent on uninterrupted performance of the treatment system to protect receptors. DTSC will consider this technology in some cases, but only if project goals cannot be achieved by engineering controls described elsewhere in this Advisory.

Variations on SSD Systems. The systems described below are all variations of SSD systems. DTSC will consider site-specific variations to the design in order to provide for the most effective design for the site.

- Block-wall suction systems involve removing vapors that accumulate in basement walls constructed of hollow blocks.
- Drain-tile suction systems apply suction to existing water drainage systems that circle a building in order to remove vapors. This requires a separate dewatering system below the venting system to allow vapors or gases to escape and not be trapped and possibly pressurized due to water in the pipes or vents.
- Sub-slab pressurization systems are similar to SSD systems, except that blowers are used to push air into the venting layer below the slab, instead of pulling the air out. This technology is particularly effective in higher permeability soils.

Podium-Style Buildings. The risk from vapor intrusion may be greatly reduced by a building design that utilizes an open air first floor, stilt, or an appropriately ventilated first floor space. An example of such a building design is a well ventilated ground level parking structure. However, all potential vapor conduits to upper floors of the building (particularly utility lines, elevator shafts, and ventilation systems) must be engineered and sealed in a manner that reduces the risk of vapor intrusion. Such provisions may include construction of the elevator on an exterior wall of the building (rather than interior, central entrance), sealing the base of the elevator, possible venting, and
increased ventilation of the elevator. If used as an enclosed parking area, additional consideration is needed to achieve ventilation flow rates required to ensure acceptable levels of carbon monoxide and VC concentration levels. In general, DTSC considers podium-style buildings inappropriate for use with single-family dwellings because of concern that individual home owners may alter or convert their garages to livable space.
Table 2
Overview of Selected Vapor Intrusion Mitigation Technologies
Modified from ITRC (2007)

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>APPLICATION</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-slab Depressurization (SSD)</td>
<td>• New and existing slab on grade structures</td>
<td>• Successful track record of performance</td>
<td>• Requires periodic maintenance</td>
</tr>
<tr>
<td></td>
<td>• Sumps, drain tiles, and block wall foundations may also be depressurized if present</td>
<td>• Adaptable technology, applicable to a wide variety of site conditions and geology</td>
<td>• Building-specific conditions may limit options for suction pit, riser pipe, and blower locations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Simple gauges show whether the system is working</td>
<td>• Long-term energy and maintenance costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• May not be feasible for large, commercial buildings</td>
</tr>
<tr>
<td>Sub-Slab Venting (SSV)</td>
<td>• Mostly new slab on grade construction</td>
<td>• Successful track record of performance</td>
<td>• Not as effective as SSD</td>
</tr>
<tr>
<td></td>
<td>• Low soil gas flux sites</td>
<td>• More applicable to new than to existing buildings</td>
<td>• Ambient temperatures and winds can adversely impact success</td>
</tr>
<tr>
<td></td>
<td>• Should be convertible to SSD system if necessary</td>
<td>• Avoids the long-term O&M costs associated with a SSD system</td>
<td>• Not suitable for existing structures unless very modest concentration reductions are required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Upgrade to SSD likely to be necessary for new structures when large reductions in concentrations are required</td>
</tr>
<tr>
<td>Submembrane Depressurization (SMD)</td>
<td>• Buildings with crawl spaces</td>
<td>• Similar to SSD</td>
<td>• Similar to SSD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Applied in situations (e.g., crawl spaces) where SSD is not practical</td>
<td>• Liners can be easily damaged and must be well-sealed at edges to prevent leaks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Can be combined with SSD</td>
<td>• System needs to be periodically inspected to confirm leaks are not present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Appropriate to retrofit existing buildings with crawl spaces</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGY</td>
<td>APPLICATION</td>
<td>ADVANTAGES</td>
<td>DISADVANTAGES</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Sub-slab pressurization</td>
<td>• New and existing slab on grade structures</td>
<td>• May be more efficient in high permeability soils</td>
<td>• More energy intensive than SSD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• May not be appropriate for low permeability soils</td>
</tr>
<tr>
<td>Building Pressurization</td>
<td>• Large commercial structures, new and existing</td>
<td>• Can be applied equally well to both new and existing structures</td>
<td>• Generally more costly than other techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Regular maintenance and air balancing needed to maintain consistent, positive pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Will require extensive reporting requirements to ensure appropriate building pressure is maintained</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Increased energy costs</td>
</tr>
<tr>
<td>Indoor Air Treatment</td>
<td>• Specialized cases only</td>
<td>• Results in physical removal and disposal of the air contaminant, not simple redirection</td>
<td>• Not appropriate for widespread application</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Less effective than other control methods (when applicable)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Maintenance-intensive and costly to install and operate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• System leaks, should they occur, may result in higher exposures than without control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Building owners and occupants may have heightened concern of indoor air contamination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Temporary or permanent relocation may become necessary</td>
</tr>
</tbody>
</table>
5.0 EVALUATION OF VAPOR INTRUSION MITIGATION APPROACHES

This chapter describes the process for evaluating the feasibility of vapor intrusion mitigation approaches and determining which approach (or combination of approaches) is best suited for a particular site. Because vapor intrusion mitigation is part of a VC response action, its selection is based on a screening and detailed analysis of alternatives. Whenever possible, the evaluation of vapor intrusion mitigation approaches should be integrated with the evaluation of remedies to address the subsurface vapor sources.

5.1 SCREENING OF MITIGATION ALTERNATIVES

Development and screening of mitigation alternatives should begin during the investigation phase, or soon thereafter, when response actions have been determined to be necessary. Chapter 4 presents the technologies that are currently available for vapor intrusion mitigation. The scope of the screening evaluation for vapor intrusion mitigation alternatives should reflect site-specific circumstances. Some alternatives may not be screened because they are not appropriate for site conditions or are not feasible because of the planned or potential land use (see considerations for each technology described in Chapter 4). For example, only buildings with crawlspace would screen a SMD system.

5.2 DETAILED ANALYSIS OF MITIGATION ALTERNATIVES

The detailed evaluation of vapor intrusion mitigation approaches involves a comparison of each approach or combination of approaches to a set of evaluation criteria. The criteria\(^2\) for evaluating vapor intrusion mitigation approaches include:

Threshold Criteria
- 1) Overall protection of human health and the environment,
- 2) Compliance with federal/state/local requirements,

Balancing Criteria
- 3) Long-term effectiveness and permanence,
- 4) Reduction of toxicity, mobility or volume through treatment,
- 5) Short-term effectiveness,
- 6) Implementability based on technical and administrative feasibility,
- 7) Cost,

Modifying Criteria
- 8) State and local agency acceptance, and
- 9) Community acceptance.

The detailed analysis results provide a basis for identifying a preferred mitigation approach and documenting the rationale behind the decision. General or classical engineering evaluation criteria for the detailed evaluation of alternatives have been established for hazardous substance release sites in guidance and regulations (see

\(^2\) Only the effectiveness, implementability, and cost criteria apply to the DTSC Removal Action Workplan process.
Table 3). In addition, there are technology-based considerations which should be used to determine if approaches are feasible and can be carried through to an overall final response action decision that is protective and implementable. Additional data which may be needed to fully evaluate vapor intrusion include community concerns, EJ issues, ambient air quality, building HVAC operation, and local land use zoning.

Table 3. State and Federal Guidelines for Alternatives Evaluation

<table>
<thead>
<tr>
<th>LAW</th>
<th>PROCESS</th>
<th>DESCRIPTION</th>
<th>SUGGESTED REFERENCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Removal Action Workplan (RAW)</td>
<td>Prepared when a proposed, non-emergency removal action or a remedial action is projected to cost less than $2,000,000. Response action selection document under HSC §25356.1.</td>
<td>DTSC, 1993, 1998</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Feasibility Study (FS)</td>
<td>Process for the development, screening, and detailed evaluation of alternative remedial actions for sites. A FS is not required for the RAW process; however, the RAW should evaluate effectiveness, implementability, and cost of various removal alternatives.</td>
<td>USEPA, 1988, 1999</td>
</tr>
<tr>
<td></td>
<td>Engineering Evaluation/ Cost Analysis (EE/CA)</td>
<td>Analogous to, but more streamlined than, the FS. Identifies the objectives of the removal action and analyzes the effectiveness, implementability, and cost of various alternatives that may satisfy these objectives.</td>
<td>USEPA, 1993</td>
</tr>
<tr>
<td>RCRA or HWCL</td>
<td>Corrective Measures Study (CMS)</td>
<td>Mechanism used by the corrective action process to identify, develop, and evaluate potential remedial alternatives.</td>
<td>USEPA, 1991, 1994b, 1997</td>
</tr>
<tr>
<td>HSAA, HWCL, RCRA, CERCLA</td>
<td>Interim Measures (IM) or Interim Actions</td>
<td>Actions to control and/or eliminate releases of hazardous waste and/or hazardous constituents from a facility prior to the implementation of a final corrective measure or response action.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
CERCLA – Comprehensive Environmental Response, Compensation, and Liability Act
HSAA – Hazardous Substance Account Act
HWCL – Hazardous Waste Control Law
RCRA – Resource Conservation and Recovery Act

The project proponent should consider site-specific conditions (such as existing versus future building, building type, building use, receptor type, and VC concentrations) when selecting the most appropriate technology to mitigate the vapor intrusion pathway. Table 4 provides a qualitative assessment of factors that should be considered in the selection process. As indicated by the table and described in Chapter 4, some technologies are not appropriate for mitigating a higher degree of risk or hazard. For
instance, use of institutional controls as the mitigation approach might only be considered for a low degree of risk or hazard. In addition, depending on the degree of risk or hazard posed by the vapor intrusion pathway, some technologies are better suited to the certain building uses. As an example, DTSC generally recommends use of podium-style buildings for multi-family residences rather than single-family residences. A given mitigation technology may have greater monitoring needs (because it is a less effective technology and/or because of the system design) which leads to higher long-term monitoring costs. For example, because SSV system performance is evaluated through chemical analyses (e.g., sub-slab vapor), the monitoring frequency and costs for this technology are relatively high when compared to technologies that have multiple performance metrics (such as SSD systems which can be evaluated through both pressure measurements and chemical analyses). The table also illustrates that some technologies have relatively higher capital costs but lower long-term costs (e.g., O&M, monitoring) than other technologies (and vice versa).

The following elements should be included with the detailed evaluation of the mitigation alternative:

- Establishment of site-specific performance objectives for the vapor intrusion mitigation system;
- Recordation of land use covenants;
- Recognition of long-term responsibilities in maintaining financial assurance and compliance with the five-year review requirement;
- Identification of applicable federal/state/local requirements; and
- Evaluation of the mitigation alternatives and the no action alternative against the applicable National Contingency Plan (NCP) criteria.

5.3 DOCUMENTATION OF DETAILED EVALUATION RESULTS

Once the evaluation is complete, the project proponent should present the detailed analysis of vapor intrusion mitigation approaches in an appropriate report (e.g., Feasibility Study, Corrective Measures Study Report). If the report is approved by the appropriate agencies, the mitigation approach selection should be presented in a decision document such as a Proposed Plan, Record of Decision, Removal Action Workplan (RAW), Remedial Action Plan (RAP), or Statement of Basis. The decision document generally outlines the conceptual plan for remediating the vapor source and mitigating vapor intrusion. Decision documents are typically released for public comment and, if needed, responses to community, stakeholder, property owner, and responsible party comments are prepared.

After the public comment period and regulatory agency approval of the decision document, the project proponent typically prepares a detailed design of the mitigation approach. The design outlines all specific elements of designing and implementing the mitigation approach (e.g., SSV or SSD system). These specific elements include not only the mechanical, electrical and structural elements, but also O&M, monitoring and reporting, financial assurance, implementation schedule, five-year review schedule, and
the identification of who is responsible for conducting these activities. Chapters 6 and 7 provide further discussion of the design and implementation of the mitigation approach.

5.4 CALIFORNIA ENVIRONMENTAL QUALITY ACT

Cleanups for vapor intrusion must meet all applicable local, state and federal requirements including the California Environmental Quality Act (CEQA). CEQA (Pub. Resources Code, sec. 21000 et seq.) requires public agencies carrying out or approving a project to conduct an environmental analysis to determine if project impacts could have a significant effect on the environment. Public agencies must eliminate or reduce the significant environmental impacts of their decisions whenever it is feasible to do so.

All proposed projects for which the DTSC has discretionary decision-making authority are subject to CEQA if they potentially impact the environment. Examples of approval actions which require CEQA review and documentation include: RAPs, interim measures, RAWs, and corrective actions. As shown by these examples, certain steps described in the VIMA are subject to CEQA. For further information, DTSC’s CEQA-related polices and procedures are available on the DTSC internet site.
Table 4. Qualitative Comparison of Selected Vapor Intrusion Mitigation Technologies

<table>
<thead>
<tr>
<th>Mitigation Technology</th>
<th>Typical Application</th>
<th>Degree of Risk or Hazard Being Mitigated<sup>2</sup></th>
<th>Monitoring During First Year of VIM Operation</th>
<th>Monitoring During Long-Term VIM Operation</th>
<th>Relative Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Operational Parameters<sup>3</sup></td>
<td>Chemical Analyses</td>
<td>Operational Parameters<sup>3</sup></td>
<td>Chemical Analyses</td>
</tr>
<tr>
<td>Institutional Control</td>
<td>R, C/I</td>
<td>L</td>
<td>n/a</td>
<td>M</td>
<td>n/a</td>
</tr>
<tr>
<td>Membrane Only</td>
<td>P</td>
<td>VL</td>
<td>n/a</td>
<td>M</td>
<td>n/a</td>
</tr>
<tr>
<td>SSV System</td>
<td>C/I, R</td>
<td>L</td>
<td>n/a</td>
<td>M</td>
<td>n/a</td>
</tr>
<tr>
<td>SSD System</td>
<td>C/I, R</td>
<td>L</td>
<td>M – H</td>
<td>L</td>
<td>L – M</td>
</tr>
<tr>
<td></td>
<td>C/I, R</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>SMD System</td>
<td>C/I, R</td>
<td>L</td>
<td>M – H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>C/I</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Building Pressurization</td>
<td>C/I</td>
<td>L</td>
<td>M – H</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Indoor Air Treatment<sup>4</sup></td>
<td>C/I</td>
<td>L</td>
<td>n/a</td>
<td>L – M</td>
<td>n/a</td>
</tr>
<tr>
<td>Podium Building</td>
<td>R<sup>5</sup>, C/I</td>
<td>L, M, H</td>
<td>n/a</td>
<td>L</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Notes:
1. See discussion of these technologies in Chapter 4.
2. Estimated based on multiple lines of evidence as established in the DTSC Vapor Intrusion Guidance.
3. e.g., pressure differential, flow rate
4. As discussed in Chapter 4, DTSC will consider for special cases, but only if project goals cannot be achieved by other engineering controls.
5. In general, DTSC recommends use of podium buildings for multi-family residences. See Chapter 4.

C/I commercial/industrial
H high
L low
M moderate
n/a not applicable
P preemptive applications (See Section 1.5)
R residential (single or multi-family dwelling)
SMD sub-membrane depressurization
SSD sub-slab depressurization
SSV sub-slab venting
VIM vapor intrusion mitigation
VL very low
6.0 VAPOR INTRUSION MITIGATION SYSTEM DESIGN

This chapter focuses on topics related to the general design of vapor intrusion mitigation systems. It begins with a discussion of design considerations for vapor intrusion mitigation systems and progresses to recommended design criteria for SSD and SSV systems followed by construction quality assurance/quality control (QA/QC) testing. The chapter closes with a section outlining the preferred content of design documents for a vapor intrusion mitigation system.

6.1 DESIGN CONSIDERATIONS

This section identifies considerations which may impact, or should be included as part of, the vapor intrusion mitigation system design. These considerations are appropriate for any proposed mitigation approach unless indicated as being specific to SSD and SSV systems. Appendix A identifies example design considerations for SSD and SSV systems. Appendix B provides additional information regarding other design considerations that DTSC or another agency might require.

6.1.1 Overall Building Design

Whenever possible, the concerns and needs of current and future building occupants should be considered during the building design process. For existing buildings, building owners/occupants should be asked their opinion about where blowers and piping should be located, what level of blower noise is acceptable, how readable different system-operation gauges and meters are, and what quality of construction craftsmanship is satisfactory. Issues regarding piping routes, blower location or vibration, and noise concerns should also be discussed with existing building owners and occupants. For example, if the mitigation contractor is considering an attic location for a blower, owners and tenants should be questioned about the current and near-future use of that space. For existing buildings with multiple mitigation options, the advantages and disadvantages associated with each option should be presented to the building owner/occupants, along with an explanation as to what alternative is preferred, and why.

New Buildings. Vapor intrusion control requirements should be integrated into the overall building design process for new buildings as soon as possible. For example, varying the location of elevator shafts, basements, utility conduits, and even the footprint of the building itself might help reduce the risk of vapor intrusion. Multiple subcontractors working independently during new building construction may not be aware of the requirements associated with installation of a vapor mitigation system, and may unwittingly jeopardize the integrity of the system. It is the responsibility of the vapor mitigation contractor to ensure that all subcontractors are aware of the vapor mitigation system and that inadvertent damage to the system is avoided.

Existing Buildings. Vapor intrusion mitigation systems installed in residential buildings should be designed, installed, and operated in a manner that minimizes noise and vibration. This is a particular concern for regenerative blowers and/or units installed in an attic. Special insulation and/or mounting hardware may be necessary in such
applications. Blower units should be located as far from sleeping areas as possible and should be readily accessible for inspection. For building modifications, the responsible party should contact the local municipal building department to determine if any permits are required. Aesthetic impacts (e.g., building appearance) should be considered in the design process.

6.1.2 Monitoring Devices and Alarms for Sub-slab Depressurization Systems

A SSD system should have an associated alarm or monitoring device so that building occupants are informed immediately if the system fails. This can be accomplished by installing an in-line pressure gauge or manometer on the SSD system. The gauge or manometer should have clearly marked line(s) showing minimum acceptable vacuum levels. Where appropriate or feasible, in addition to a manometer or gauge, visible and audible alarms should be considered in order to indicate loss of system vacuum or power. In all cases, clear instructions (with the name and phone number of a person to be contacted in such an event) should be placed in a visible location, such as near the gauge or manometer.

6.1.3 Back Drafting and Short Circuiting of Sub-slab Depressurization Systems

The operation of a SSD system may, in some cases, increase the depressurization level of a building to the extent that “back drafting” could occur. Back drafting in association with oil/gas furnaces, wood stoves, and fireplaces means that the appliance is sending smoke or air back into a room, rather than venting the air to the outside. Back drafting can theoretically occur if negative pressures within a building are stronger than the density differential which drives gases associated with combustion appliances up a chimney. In such cases, potentially deadly combustion gases, such as carbon monoxide, could be re-circulated into the building. The Guide for Assessing Depressurization-Induced Backdrafting and Spillage from Vented Combustion Appliances (ASTM, 1998) may be used as guidance for determining back drafting conditions. If a back drafting potential is identified, the SSD system should not be installed or operated until a qualified HVAC contractor corrects drafting problems. In addition to improvements in appliances and flues, make-up air can be ducted from the outside to provide for combustion and drafting. A carbon monoxide detector should be considered for any home where a SSD system is installed and back drafting is a possibility.

The presence of a sump in a basement or interior perimeter french drains may "short circuit" the establishment of a sub-slab negative pressure field. In such cases, an air tight cover should be installed over the sump. If a sump pump is present, the cover should be equipped with appropriate fittings or grommets to ensure an air-tight seal around piping and wiring, and the cover itself should be fitted with a gasket to ensure an air-tight seal to the slab while facilitating easy access to the pump (Orange County Fire Authority, Planning, and Development Services, 2008).
6.1.4 Integration of Mitigation and Subsurface Remediation Systems

Consideration should be given to the coordination between site remediation efforts and design of the vapor intrusion mitigation system at the structures, including potential conflicting needs, infrastructure needs, and project schedules for the mitigation and remediation systems.

For existing buildings, any nearby active ground water, soil gas, or soil remediation system has the potential for soil vapor concentrations to negatively impact indoor air, especially during the startup phase. Chemical oxidation, air sparging, bioremediation, hydrofracturing, bioventing, and other remedial technologies may initially mobilize or elevate concentrations of contaminants, or result in the generation of potentially volatile breakdown products previously not monitored in the building indoor air. These effects should be identified and controlled to prevent potential impacts to indoor air. The frequency of indoor air monitoring and soil gas monitoring may need to be increased during the startup phase of active source remediation.

A perimeter soil gas monitoring system may be required to evaluate the potential for VCs to migrate onto, or off of, the site in question and potentially impact additional structures. The soil gas monitoring system should be consistent with the site remediation/characterization goals and the DTSC Vapor Intrusion Guidance.

6.1.5 Incidental Removal Effects of SSD Systems

The design objective of a vapor intrusion mitigation system is to reduce to acceptable levels the risks posed by soil vapors infiltrating the building. Although SSD systems may have some incidental VC removal effects and benefits, these effects and benefits are minimal and will not have an appreciable impact on site contaminant levels. Thus, installation of a SSD system should not be considered to be equivalent to installation of a soil vapor extraction system. In most cases, remediation of soil, soil gas, and/or groundwater will occur independent of the vapor intrusion mitigation system.

6.1.6 Safety and Environmental Hazards

Examples of safety and environmental hazards associated with a system design and that may need to be addressed include the following:

Proximity of Building Occupants During System Installation. For existing occupied structures, mitigation system installation will likely be conducted in close proximity to building occupants. Thus, safety concerns should be a priority. Attempts should be made to minimize physical hazards, noise, dust, and other inconveniences to occupants.

Concentrations Above Lower Explosive Limit. For sites where subsurface concentrations are above the lower explosive limit (LEL) of any constituent and a subsurface gas pressure of one pound per square inch (psi) or more is present, the site should be carefully evaluated. A deep well pressure relief system or other
improvements, which reduce concentrations and pressures to acceptable levels, should be considered in addition to the building mitigation system. Mitigation of the elevated gas pressures at these sites may be required as a condition of site approval. Additional guidance may be provided in *Advisory on Methane Assessment and Common Remedies at School Sites* (DTSC, 2005b).

Environmental Hazards. Other potential environmental hazards at the site or within existing structures should be identified and mitigated as part of the design considerations. The presence of other environmental hazards may delay construction activities until the hazard is adequately addressed or the appropriate safeguards are in place. Depending upon the age of the structure, lead or asbestos may be of concern. Generally construction prior to 1980 may have asbestos while construction prior to 1990 may have lead-based paint concerns. Vermin and molds may also be a cause for concern due to potential health impacts from dust disturbance during construction.

6.1.7 Existing Buildings

Design of a vapor intrusion mitigation system for existing buildings has the following additional considerations.

Building Foundation. An inspection of the building foundation should be conducted to identify all potential entry routes for VC-contaminated soil gases. Examples of potential entry points include cracks in concrete walls or slabs, gaps in fieldstone walls, construction joints between walls and slabs, annulus space around utility pipes, elevator shafts, and open sumps. If feasible for the type of contamination, potential entry points should be surveyed with a portable photoionization detector or flame ionization detector. It is often possible to find discrete "hits" at particular points where vapor intrusion is occurring.

Possible Entry Points. All possible entry routes should be sealed off, as feasible, to prevent VC entry. If a SSD system is installed, sealing entry routes will enhance the sub-slab negative pressure field. Sealing/caulking materials should not contain VCs.

Sub-Slab Permeability and Flow Characteristics. The air flow characteristics of the material(s) beneath the slab should be quantitatively determined by diagnostic testing. This is an important step in the SSD design process, and should always be performed prior to the design and installation of a SSD system. The objective of diagnostic testing is to investigate and evaluate the development of a negative pressure field via the induced movement of soil gases beneath the slab. Appendix C provides additional details regarding diagnostic testing.

Residential Homes. For existing residential homes, it may be appropriate to install a relatively standard mitigation system without building-specific designs or pre-mitigation diagnostic tests in order to expedite installation due to risk considerations. This ‘standard design’ approach allows systems to be installed more quickly (which may be important at larger sites with a number of homes requiring mitigation).
However, post-mitigation testing will be required to verify that the standard design is adequate.

Future Inspections. Accommodation and provision for future building and mitigation system inspection needs should be included in the system design as well as management plans.

6.1.8 Other

Other design considerations include the following:

Depth to Water. The responsible party should have ascertained the depth to groundwater during site investigations. In general, the groundwater table should be at a sufficient distance below the building slab to ensure that the water table does not impede the effectiveness of a SSD/SSV system. Seasonal changes in groundwater elevation should be considered when evaluating the feasibility of a SSD/SSV system.

Labeling. The system design should include specifications for prominently labeling the system. Labels should include the purpose of the system, safety warnings, and instructions for keeping piping clear and unblocked. Labels should also include the name, address and telephone number of the entity to contact for questions, repairs, etc. Labels should be printed in English as well as other languages as necessary. See Appendix B (item 6) for further suggestions regarding system labeling.

6.2 CONSTRUCTION QUALITY ASSURANCE/QUALITY CONTROL TESTING

Installation of a vapor intrusion mitigation system should also include construction QA/QC testing of various components of the system. Typical QA/QC tests include the following.

Liner System. The responsible party should conduct a smoke test of the liner system, as recommended by the liner manufacturer, to ensure no leaks exist at the time of installation. Where leaks are identified, appropriate repairs should be undertaken and smoke testing should be repeated until no leaks are detected.

Proper Function. Testing should be conducted to verify that installed blowers, gauges, alarm systems, and other system components are functioning properly.

Compliance with Performance Measures. Air quality sampling\(^3\) and/or pressure measurements should be collected to confirm compliance with the performance measures included in Section 7.2.1. Generally this confirmatory sampling should occur two to four weeks after system startup. Subsequent sampling should be conducted during the potentially “worst case” months of January/February and June/July (for most locations in California).

\(^3\) An alternative to indoor air sampling may be considered. One option is the use of slotted piping above the liner (but below the foundation) with sampling port(s) accessible on the outside of the building for baseline and compliance testing. However, this approach should be used cautiously (see further discussion in Section 7.2.2).
Model Home. For proposed future residential developments where the human health risks have been identified as greater than 1×10^{-4}, a model home could be constructed at one or more locations of the highest potential vapor intrusion concentration, within proposed development area(s), for the purpose of testing and verifying adequate vapor intrusion mitigation. QA/QC testing should be conducted as described above. In addition, indoor air sampling should occur prior to the installation of carpeting or other construction features which may contribute to background VC concentrations.

6.3 DESIGN DOCUMENTS

Certain components should be included in the vapor intrusion mitigation system design proposal that the responsible party submits to DTSC for review and approval. The design document can include components in one document or in separate documents, depending on project-specific considerations and process.

6.3.1 Design Document Content

The design document should include the following recommended components, not necessarily in the listed order.

Introduction. Identify the project, the purpose of the document, and the regulatory-basis for the vapor intrusion mitigation system.

Project Background. Identify the rationale for vapor intrusion mitigation, current and future property land use considerations, VCs of concern, and other general project considerations. If appropriate, this section should also indicate how the vapor intrusion mitigation system is integrated with soil, soil gas, and/or groundwater remediation efforts.

Site Conditions Summary. Present the CSM and summarize:

- Site geology;
- Site hydrology with emphasis on the groundwater table in wet and dry seasons;
- Previous groundwater, soil, soil gas, and indoor air sampling efforts;
- List of VCs of concern with maximum detected soil gas concentrations that would potentially impact indoor air quality;
- Remediation efforts and cleanup goals;
- Potential remediation treatment/degradation by-products;
- Ambient air quality considerations including predictive point source dispersion modeling or sampling;
- Estimations to the degree of indoor air impacts (such as Johnson and Ettinger modeling results); and
- Public participation efforts.
This section may reference previous documents (e.g., current conditions report, summary reports). However, an overview of the pertinent information should be provided along with references to other documents.

Existing Building Design Report. For existing buildings, an initial design report detailing the inspection of the building foundation and diagnostic tests should be prepared and submitted with the vapor intrusion mitigation design document. This report should contain at least the following elements:

- Description and diagram of the building foundation;
- Methods used in diagnostic testing;
- Results of the diagnostic tests; and
- Existing HVAC system design and operating parameters.

See Section 6.1.7 for more testing recommendations for existing buildings.

Operation and Maintenance Plan. The design document should include an O&M Plan that includes, among other provisions, the mitigation goals and objectives. The performance measures and contingency measures for the vapor intrusion mitigation system should be identified in this section. This section should reference section(s) identifying how the goals and objectives will be monitored and tested, and may identify general institutional control requirements and/or use restrictions (such as prohibited construction and restricted building modifications). Additional O&M requirements include implementation mechanisms, and responsibilities for tasks and final obligations. See Section 7.2 for a detailed discussion of the O&M Plan content.

Design Basis. Identify the design assumptions and criteria to be met by the vapor intrusion mitigation system.

Construction Methods. Identify the construction methods to be used once the design has been approved, including:

- Construction specifications;
- Minimum material specifications;
- Installation procedures;
- Construction QC procedures; and
- Post-installation testing procedures.

Design Calculations and Drawings. The design document should include the design calculations and drawings for the vapor intrusion mitigation system.

Conceptual Drawings. The design document should include conceptual drawings indicating building locations, prescribed building envelopes, streets, driveways, hardscape areas, utility easements, and other infrastructure considerations.
Vapor Intrusion Mitigation Approach. Provide a detailed description of the proposed vapor intrusion mitigation approach, including phasing (tier approach) concepts and the following information:

- Technical basis for the system design;
- Construction and implementation requirements;
- Any possible additional vapor treatment system which may be required;
- Component specifications and verification of ability to meet performance measures (including long-term sustainability);
- Detailed testing procedures including on-the-job instructions;
- Permit requirements from other agencies (such as a permit to construct and a permit to operate vapor treatment systems);
- Reporting requirements; and
- Applicable engineered drawings and system diagrams.

Implementation Mechanisms. Identify the LUC requirements, deed restrictions, and soil management plans.

Financial Assurance. Identify the applicable financial assurance requirements.

Additional Content. The design document should include title and signature pages (with engineering licensure stamp and signature; see Section 6.3.4), table of contents (with a list of tables and figures), and any other system details or proposal addressing mitigation considerations identified in Chapters 4 or 7.

Additional content may be required depending upon site-specific conditions and the subsurface cleanup objectives. Based upon project needs, a conceptual draft plan submittal and approval may be necessary prior to submittal and approval of the final system engineering plans. The review and approval of the system design may require a phased approach and may include the need for pilot studies, startup testing, and agency review prior to final approval.

6.3.2 Supporting Documents

The design document for the vapor intrusion mitigation system should include a discussion of other documents that may be required for its proper implementation. These documents may include, but are not limited to, the following:

Health and Safety Plan. The design document may need to include a worker health and safety plan that addresses such topics as worker training requirements, protective gear, and monitoring procedures.

Public Participation Plan. The design document should include a public participation plan that identifies future notification requirements and mechanisms.
6.3.3 Response Action Implementation Report

A response action implementation report (or completion report) should be submitted to DTSC upon completion of construction of the mitigation system. The completion report should include final as-built design drawings, confirmation sampling results, and provisions for determining that the response action is complete (including shut-off criteria).

6.3.4 Licensure Requirements

All vapor intrusion mitigation systems should be designed in conformance with standard engineering principles and practices. The design document preparer must sign and stamp the document in accordance with the California Business and Professions Code. The system should be installed under the direct supervision of a professional engineer with specific experience in building vapor mitigation (such as methane, radon, or VOCs), foundation design, and HVAC systems.
7.0 VAPOR INTRUSION MITIGATION SYSTEM IMPLEMENTATION

This chapter discusses implementation considerations for vapor intrusion mitigation systems.

7.1 PROPERTY OWNER/OCCUPANT IMPACTS, CONCERNS AND RESPONSIBILITIES

Responsible parties and stakeholders involved with vapor intrusion mitigation should always keep in mind that the buildings under discussion will be occupied, or are already occupied, by people living and working within that space. For existing buildings, the owner and/or tenant preferences should be considered during the design phase.

7.2 OPERATION AND MAINTENANCE

Any proposed vapor intrusion mitigation at a structure should include an O&M Plan. At a minimum, the O&M Plan should consist of the elements described in the following sections.

7.2.1 General Performance Goals

The O&M Plan should identify specific performance goals for the vapor intrusion mitigation system. Example performance goals include the following:

- Elimination of the exposure pathway between contaminated media and indoor air receptors.
- Reduction of the indoor air concentrations to an acceptable level.

7.2.2 Performance Measures

Performance measures should be established to ensure that the vapor mitigation system is operating correctly and preventing unacceptable VC concentrations from migrating up and into the overlying structure. Performance measures should be developed on a case-by-case basis to reflect site-specific needs and conditions and should reflect the site-specific risk management considerations discussed in Chapter 2 and indicated in Table 4. The O&M Plan should identify the performance measures for the vapor intrusion mitigation system (e.g., in the section that describes the goals and objectives). The O&M Plan should state the methods by which the performance goals will be tested and verified. Some examples of performance measures are provided below.

- Collecting vapor samples to demonstrate the effectiveness of the mitigation.4
 (Note: Vapor samples may be collected from within the building itself, between the foundation and the sub-slab liner system, and below the sub-slab liner system (i.e., within the sand/gravel blanket), or any combination thereof.)

4 The number and location of samples should be carefully selected to ensure adequate assessment of the mitigation performance goals for the entire building.
For SSD systems, collecting pressure data to demonstrate the presence of a negative pressure field below the entire building foundation.5 (Note: Pressure measurements are collected below a building foundation, usually below the sub-slab liner (i.e., within the sand/gravel blanket of the SSD system). A pressure differential of approximately -4 to -10 Pascal (Pa) or less beneath the sub-slab liner is generally adequate to mitigate vapor intrusion (USEPA, 2008a).

For HVAC systems, measuring differential pressures and air exchange rates as well as monitoring of system operations.

Ensuring continuous operation of the mitigation system.

Ensuring operation in accordance with the manufacturer’s specifications.

7.2.3 General Guidelines for Monitoring

The O&M Plan should identify the monitoring requirements for the vapor intrusion mitigation system. These requirements should be developed on a case-by-case basis to reflect site-specific needs and conditions. As indicated in Table 4, the monitoring program should consider the degree of risk or hazard being mitigated, the building use (e.g., residential, school, commercial/industrial), and the technology used to mitigate vapor intrusion. General considerations for the monitoring program are described below. Additional monitoring considerations for SSV and SSD systems are described in Sections 7.3.2 and 7.4.2, respectively.

Establish Baseline Conditions. To establish a baseline condition for future comparison, the responsible party should conduct vapor sampling (e.g., sub-slab, crawl space) immediately after installation of the vapor intrusion mitigation system. If applicable to the vapor intrusion mitigation system (e.g., SSD systems, SMD systems), the responsible party should also collect baseline pressure measurements. Seasonal variation should be considered when establishing the baseline conditions.

Routine Vapor and Pressure Monitoring. The responsible party should collect vapor samples (e.g., sub-slab, crawl space) and/or pressure measurements (if applicable) on a routine basis to verify the effectiveness of the mitigation system. Typically, data are collected on a semi-annual basis. Seasonal variation should be considered when establishing the sampling schedule. The considerations identified in Table 4 may assist with establishing the number and frequency of monitoring events necessary to meet the performance goals and measures.

Routine Monitoring of System Operations. The responsible party should monitor the mitigation system to ensure that it is operating effectively. For example, if building pressurization is being used to mitigate vapor intrusion, routine monitoring would include assessment to determine that the HVAC system is operating so as to maintain the desired positive pressure. The O&M Plan should include equipment maintenance

5 The number and location of measurements should be carefully selected to ensure adequate assessment of the mitigation performance goals for the entire building.
requirements to ensure continued operation of the system and integrity of engineering controls.

Indoor Air Quality Monitoring. As indicated in Table 4, the frequency of indoor air quality monitoring should consider the potential risk posed by vapor intrusion as well as the effectiveness of the vapor intrusion mitigation system. Provisions for periodic indoor air sampling should be included in the O&M Plan to demonstrate continued effectiveness of the mitigation system. For example, high risk single family residential structures may warrant sampling every two years whereas for low risk single family residential structures it may be sufficient to sample every five years. For higher risk sites, initial indoor air sampling should be conducted seasonally (total of two per year) for the first three years or until consistent verification that the mitigation system is meeting established indoor air performance measures. The responsible party may modify the sampling frequency upon DTSC’s review and approval.

For large or complex buildings (including schools), more frequent and/or systematic indoor air monitoring programs may be advisable depending upon level of risk and performance goals. Large or complex buildings may require a more complex network of vent piping under the building and may pose difficulty in determining pressure measurements or vapor concentrations at the interior locations farther from the outside perimeter. The network of vent piping and monitoring points should consider methods to determine the effectiveness at the more interior locations. In some cases, indoor air monitoring may be more effective for determining the mitigation performance, especially in cases of existing buildings where mitigation is a retrofit to the structure.

In lieu of frequent indoor air sampling, VC sampling between the sub-slab liner system and the building slab could be used on a more frequent basis as a potential measure of the reduction of VC concentrations. However, such an approach should include a conceptual model of potential leak mechanisms and pathways, and a discussion of how the planned monitoring above the liner would be capable of identifying such leaks. Verification testing may require sampling from above the sub-slab liner system and within the sand/gravel blanket of the SSV, SSD, or SMD system.

Soil Vapor Monitoring. In some cases, permanent soil gas monitoring points may need to be installed. Permanent soil gas probes, also referred to as monitoring points, can be used to evaluate the long-term behavior of soil gas adjacent to existing or future buildings. When a soil vapor monitoring program is proposed, the responsible party should provide a detailed outline of the program to DTSC for review and approval. The outline should specify monitoring procedures, locations, frequencies, and equipment. The design of the VC monitoring program should consider the following.

- Monitoring of subsurface vapor probes should include the measurement of the VCs concentrations as well as the measurement of the gas pressure within the probe and the barometric pressure at the time of the monitoring.

As discussed in the DTSC Vapor Intrusion Guidance, indoor air sampling is not straightforward because contaminants housed in the structure (such as paint, dry cleaning, or gun cleaner) may be contributing to VC concentrations measured in the indoor air sample.
All monitoring probes should be properly secured, capped and completed to prevent infiltration of water and ambient air and to prevent accidental damage or vandalism of the probes. Replacement or repair may be needed due to the conditions of the soil vapor probes or disturbance due to construction activities. For probe surface completions, the following components should be installed:

- Surface seal;
- Utility vault or box with ventilation holes and lock;
- Gas-tight valve or fitting for capping the sampling tube.

The utility vault/box needs to be placed at a sufficient height to prevent inundation of water or built in a manner to preclude water from infiltrating the box.

Adjacent Buildings. Buildings adjacent to properties with mitigation systems may also warrant periodic review or monitoring to verify that potential vapor intrusion exceeding action levels is not occurring. The frequency of monitoring depends on the location of the building within the zone of contamination, and its potential to be impacted. As appropriate for the site-specific conditions and remediation strategies, this monitoring may consist of soil gas monitoring, sub-slab vapor sampling, and/or indoor air sampling.

Monitoring for Combustible Gases. If applicable, monitoring of combustible gas levels should be conducted at vapor monitoring points, soil gas monitoring points, along the ground surface in open areas, within crawl spaces beneath a structure, and/or in the interior of a building.

7.2.4 General O&M Requirements

General activities that may be required by the O&M Plan include:

- Ensuring that site conditions have not changed in a way that will impact the function or measurement of the mitigation system;
- Inspection of all visible components to ensure that the mitigation system is operating properly, that it has not been modified, and that components have not degraded;
- Surface sweeps to determine if significant changes in subsurface gas concentrations or pressure have occurred; and
- Monitoring of changes in ownership, tenant, and/or building conditions and, depending on requirements cited in the LUC, modifying the enforceable mechanism. DTSC should be notified of applicable changes within 60 days of identification of any changes.
7.2.5 Contingency Plan

The O&M Plan should reference or include a contingency plan that will be implemented in the event of failure to meet the predetermined performance goals and specifications identified in the O&M Plan, or in response to monitoring data. The contingency plan should include action levels, a decision flowchart regarding specific actions and identify the parties responsible for implementing these actions. The flowchart should also include notification requirements, response timeframes, and potential trouble-shooting actions.

7.3 IMPLEMENTATION CONSIDERATIONS FOR SUB-SLAB VENTING SYSTEMS

7.3.1 Operation and Maintenance

In addition to the general O&M activities described in Section 7.2.4, typical O&M activities for SSV systems may include:

- Inspection of the area of concern, including all visible components of the venting systems and the multi-stage gas probes;
- Monitoring of designated gas probes, lowest accessible floor of the building, and enclosed areas of the building to ensure there are no potentially significant changes in subsurface gas concentrations or pressure;
- Monitoring of vent risers for flow rates and gas concentrations to confirm that the venting systems are functioning as intended; and
- Other appropriate requirements such as routine maintenance, calibration and testing of functioning components of the venting systems in accordance with the manufacturer’s schedule and recommendation, if appropriate.

7.3.2 Monitoring

The monitoring program for SSV systems should address the general monitoring requirements described in Section 7.2.3. In addition, more frequent and/or systematic indoor air monitoring programs may be advisable for SSV systems depending upon level of risk and performance goals. Initially, indoor sampling should be conducted seasonally (total of two per year) for the first three years or until consistent verification that the mitigation system is meeting established indoor air performance measures. The responsible party may modify the sampling frequency upon DTSC’s review and approval.
7.4 IMPLEMENTATION CONSIDERATIONS FOR SUB-SLAB DEPRESSURIZATION SYSTEMS

7.4.1 Operation and Maintenance

Typical O&M activities for SSD systems may include the items discussed in Sections 7.2.4 and 7.3.1. In addition, the blower should be checked to ensure that all components are operating properly and that the blower is drawing a sufficient vacuum.

7.4.2 Monitoring

The monitoring program for SSD systems should address the general monitoring requirements described in Section 7.2.3 as well as the following additional considerations.

Monitoring of Vent Risers. Routine monitoring of vent risers for flow rates and total VC concentrations should be conducted to confirm that the VC venting systems are functioning properly. If warranted by site-specific conditions, sampling should be for individual VC constituents rather than total VCs to allow for comparison to site remediation soil gas monitoring (for example, if significant, unexplained changes occur in total VC concentrations or for industrial/commercial buildings which utilize VCs). Data quality objectives should be established as part of the monitoring or sampling and analysis plan.

Indoor Air Sampling. Indoor air quality may not need to be directly measured as frequently as vapor samples and pressure measurements. Indoor air quality should be acceptable as long as an adequate negative pressure is maintained below the building foundation and the mitigation system effectiveness has been demonstrated.

7.5 DOCUMENT SUBMITTALS

Vapor intrusion mitigation plans, reports, and other documents should be submitted to DTSC for review and approval. The level of reporting should be determined on a case-by-case basis. At a minimum, the documents described in this section should be submitted to DTSC. As applicable, documents should be signed and stamped by a registered professional who is responsible for the technical content in accordance with the California Business and Professions Code (see Section 6.3.4).

7.5.1 Sampling and Analysis Plans

Sampling and analysis plans detailing testing, sampling methods, sample analysis, data quality objectives, QA/QC protocols, and frequency of sampling should be submitted to DTSC for review and approval prior to implementation of mitigation measures.
7.5.2 Design Document

A document detailing the vapor intrusion mitigation system design should be submitted to DTSC for review and approval prior to commencement of system installation. As applicable, this document should be prepared after the inspection of the building foundation and diagnostic tests. Section 6.3 provides a detailed outline for a complete mitigation system design submittal.

7.5.3 Interim Measure Construction/Final Installation Report

A report detailing the vapor intrusion mitigation system installation and operation should be submitted to DTSC for review and approval after system construction. This report should, at a minimum, include:

- As-built drawings of all system components including vacuum or sampling monitoring points;
- Brief account of field activities associated with the system installation and startup;
- Initial post-startup test data and flow readings from the extraction and monitoring points;
- Description of back draft evaluation and documentation that a back draft situation is not occurring;
- Complete analysis and interpretation of the data; and
- Raw data.

7.5.4 Periodic Monitoring Reports

Monitoring reports on the operation and testing of the vapor intrusion mitigation system should as a minimum include:

- Inspection reporting;
- Pressure test data and flow rate readings;
- Laboratory and screening results of indoor air and/or discharged vapor samples;
- Any problems and/or malfunctions (including time frame and schedule of repair);
- Repairs or modifications to the system; and
- Any complaints received.

7.6 INSPECTIONS

The responsible party should conduct routine inspections of the mitigation system to ensure there are no significant changes in site conditions and there are no signs of degradation of the system components. The inspections should address all mitigation system components, including visible components of the VC venting systems, the multi-level gas probes, and the blower (if present). The frequency of inspections should be based on site-specific considerations. Annual inspections may be appropriate for some
sites whereas other sites may warrant more frequent inspections. Higher inspection frequencies may be appropriate for the first year of system operation followed by a reduced frequency after one year of efficient operation.

If an inspection determines that the building foundation or components of the mitigation system have been modified by the owner/tenant, appropriate testing should be conducted to ensure that performance measures are being met.

Review and inspection of adherence to the engineering controls and/or institutional controls (ICs; as specified in the applicable enforceable mechanism) should be conducted. The frequency of review and inspection should be selected based on site-specific considerations. The responsible party should prepare and submit inspection reports to DTSC for review pursuant to the enforceable mechanism and/or LUC requirements.

7.7 FIVE-YEAR REVIEWS

CERCLA and State law require five-year reviews for a response action that results in hazardous substances remaining at the site at concentrations that would preclude unrestricted land use. Any regulatory oversight agreement or enforceable mechanism, LUC, as well as the O&M Plan, should include provisions for conducting five-year reviews. The purpose of the five-year review is to ensure that the response action remains protective of human health and the environment, is functioning as designed, and is maintained appropriately by O&M activities. The review generally addresses the following questions:

- Is the response action and/or mitigation functioning as intended?
- Are the cleanup and/or mitigation objectives, goals, and criteria used at the time of response action determination still valid?
- Have there been significant changes in the distribution or concentrations of VCs at the site?
- Are modifications needed to make the O&M Plan more effective?

The scope of the five-year review may be outlined in the O&M Plan or in a separate workplan developed for a specific review. The review of the response action and/or mitigation would typically consist of:

- Notifying the community that the review is being conducted;
- Site inspection and review of the response action and mitigation to answer the above questions; and
- Preparing a report that details the findings of the review for regulatory agency approval.

Depending on site-specific considerations, DTSC and/or the responsible party may conduct the site inspection and/or technical assessment. DTSC staff will review the report and make recommendations to: ensure that the response action and/or
mitigation remains effective; identify milestones toward achieving or improving effectiveness; and provide a schedule to accomplish necessary tasks.

7.8 ENFORCEABLE MECHANISMS

The responsible party must implement O&M of vapor intrusion mitigation systems, either as an interim response action or as part of the final response, through a DTSC legal counsel approved enforceable mechanism, such as a corrective action consent agreement, LUC, consent order, O&M agreement, post-closure permit, or other legally binding agreement, to address DTSC oversight and cost recovery. Any enforceable mechanism should, among other things, include the following items:

- O&M Plan;
- Financial assurance requirements (if not part of the O&M Plan);
- Closure specifications;
- Contingency plan (if not part of the O&M Plan);
- Applicable contacts;
- Allowance for DTSC access as necessary;
- Provisions for enforcement;
- DTSC cost estimation with provision for annual updates; and
- Project schedule.

7.9 FINANCIAL ASSURANCE

O&M costs should be the responsibility of the responsible party/site owner and identified as such in the enforceable mechanism (Section 7.8). The responsible party/site owner should be required to establish and maintain a sufficient and enforceable financial assurance mechanism for costs associated with implementation of the vapor intrusion mitigation response action, O&M activities, LUC compliance, five-year reviews, DTSC’s oversight, and any other applicable costs associated with the implementation and use of vapor intrusion mitigation.

7.10 ACCESS AGREEMENTS

To address the concerns of affected parties, an access agreement should be executed prior to entering the property for testing and/or construction. Examples of concerns necessitating access agreements might include:

- Granting access for testing and/or construction (e.g., property owners and tenants);
- Future liability (e.g., landlords);
- Employee reactions should testing indicate vapor intrusion is occurring (e.g., business owners);
- Disrupting business operations (e.g., tenants); and
Privacy issues (e.g., homeowners).

Access for O&M purposes should be authorized by the applicable LUC. Typically, such a covenant would require access for DTSC oversight and other activities necessary to protect the public health and safety or the environment. The LUC would also address access for the person or entity responsible for implementing O&M. These access rights are binding on future owners and occupiers of the property. The owner who signs the covenant and all future owners are required to incorporate the covenant by reference into each and every deed, lease, rental agreement, and any other document that creates a right to use or occupy any portion of the property subject to the covenant.

7.11 LAND USE COVENANT AND INSTITUTIONAL CONTROLS

When vapor intrusion mitigation at a structure is necessary, as an interim response action or in conjunction with a final response action, the mitigation requirement should be included in a LUC (i.e., Covenant to Restrict Use of Property, Environmental Restriction). The LUC may include other ICs with their prescribed notifications, prohibitions, restrictions, and requirements that must be utilized to ensure O&M and disclosure of the risks, restrictions, and requirements to future buyers and occupants.

If existing conditions without mitigation may cause unacceptable future risk to receptors, effective legal notification to future buyers of the property, occupants of future developments, or re-developments on the property will be required. In this case, it is appropriate to include the following provisions in the LUC:

- Notice of the existing conditions known to the environmental agency that may cause potential unacceptable risk from vapor intrusion;
- Prohibition against specific uses of the property;
- Prohibition against interference with the vapor intrusion mitigation system;
- Prohibition against activities that will disturb impacted soil without DTSC approval;
- Right of access to the property for DTSC to inspect, monitor, and perform other activities relative to the vapor intrusion mitigation system;
- Right of access to the property for the person responsible for implementing the O&M activities relative to the vapor intrusion mitigation system; and
- Inspection and reporting requirements for the owner of the property.

LUCs must be compliant with California Code of Regulations, title 22, Division 4.5, Chapter 39, Section 67391.1, approved by DTSC legal counsel, and publicly recorded in the county recorders office. DTSC has an approved model Covenant to Restrict Use of Property, Environmental Restriction that should be utilized when developing a site-specific LUC.
7.12 EMISSIONS AND DISCHARGES

The need for air permits should be determined for all sites in order to comply with applicable state or local air quality control regulations. In certain cases, particularly those that involve large numbers of structures requiring mitigation within a certain area or those where the mitigation creates high vapor flux rates, it is possible that redirection of soil gases from beneath the building to the ambient air may result in unacceptably high cumulative air quality impacts at receptor points within the community. In such cases, it may be necessary to apply emission controls on mitigation systems to reduce the concentrations of VCs being discharged to the atmosphere. Generally, where unacceptable ambient air impacts exist, a dispersion modeling analysis of the emissions point(s) may be used to estimate whether resulting ambient air quality impacts exceed applicable State toxic thresholds or other health-based standards. Finally, in some instances, a community ambient air monitoring network may be established to demonstrate that the local population is not being exposed to unacceptable levels of air contaminants resulting from the vapor intrusion mitigation processes.

7.13 COORDINATION WITH OTHER AGENCIES

The responsible party should coordinate with State and local agencies that have jurisdiction for sites requiring vapor intrusion mitigation. Local agency involvement should start early in the mitigation process to alleviate potential construction delays. Where overlapping regulatory authority or requirements are identified, DTSC should come to an agreement with the other applicable agencies to ensure that the project strategies are compatible and requirements can be met. In cases where oversight authority may be overlapping or redundant, an agreement (such as a Memorandum of Understanding) should be made between the applicable entities for designation of a single oversight agency.

Some of the local agencies that may require coordination efforts are listed below.

Air Discharge Permits. Permits or authorizations from the local air pollution control district (APCD) or air quality management district (AQMD) may be required for venting systems that exhaust to atmosphere. DTSC recommends that the local APCD or AQMD be consulted to confirm their requirements prior to the submittal of initial designs to DTSC.

Building Codes. The mitigation design criteria need to be compatible with applicable local and State building, electrical, and energy codes. Some building HVAC requirements may impact the mitigation design considerations and, thus, must be considered at the time of building design. The responsible party should coordinate with the applicable local planning and building departments for mitigation system design review concurrent with DTSC’s engineering review and approval.

Land Use. Local county and city land use decisions and requirements may impact or influence future use of the project site. Discussions and coordination with local land use authorities, including redevelopment agencies, should begin as soon as possible once it
is determined that vapor phase contaminants are a concern and/or there is a potential for vapor intrusion.

Fire Departments. The mitigation design criteria need to be compatible with applicable local and State building fire codes. The responsible party should coordinate with the applicable local fire agency on mitigation system design review concurrent with DTSC’s engineering review and approval. Coordination with the local fire agency is especially important when methane is present as a VC of concern to ensure both compatibility and consistency with local agency requirements for methane.

7.14 CALIFORNIA ENVIRONMENTAL QUALITY ACT

CEQA requires DTSC to analyze potential environmental impacts for discretionary project decisions, such as DTSC’s approval of interim response actions or the proposed final response action. The approval of a vapor intrusion mitigation system is a discretionary project decision for which a CEQA evaluation would be required (unless the Site is exempt from CEQA, such as National Priority List sites). Cumulative impacts of all media, including single and/or multiple points of discharge from system vents are required to be considered as part of the CEQA evaluation. Project proponents are required to submit all necessary environmental information for DTSC to complete a CEQA evaluation. The DTSC project manager, in conjunction with DTSC CEQA support staff, completes and processes necessary CEQA documents.

As interim responses, most vapor intrusion mitigation projects are not likely to require a full Environmental Impact Report (EIR) level of analysis or procedure. Generally, it would be expected that a vapor intrusion mitigation project would qualify under a notice of exemption, negative declaration, or a mitigated negative declaration. Some large scale projects (i.e., new residential developments) could warrant an EIR.

Generally, a new development proposal (commercial, industrial, or residential) will require an EIR for which the local land use agency would be considered the lead agency. In such cases the vapor intrusion mitigation proposal can be included as part of the analysis and a separate CEQA evaluation would not be required. In such cases, DTSC would be a responsible agency and would coordinate with, and provide input to, the lead agency. It is best not to separate the development analysis from the vapor intrusion mitigation to ensure compatibility and consistency with identified CEQA-related mitigation measures.

7.15 COMMINGLED CONTAMINANTS/PLUMES

It is not uncommon to have situations where there are commingled contaminants or plumes. Care must be taken to address all aspects of the commingled contaminants relative to mitigation needs, while coordinating with other agencies as discussed in Section 7.13.

Methane and/or radon are common contaminants which may be commingled with VOC contamination. The *Advisory on Methane Assessment and Common Remedies at School Sites* (DTSC, 2005b) should be consulted as part of a mitigation strategy where
school buildings are involved to ensure compatibly and consistency. In addition, local jurisdictions often have guidance specific to methane and/or radon. This guidance should be consulted as part of a mitigation strategy to ensure compatibly and consistency.

7.16 MULTIPLE RESPONSIBLE PARTIES

In cases where multiple responsible parties share in the obligations for the response action, mitigation, and long-term care of a site, the enforceable mechanism (see Section 7.8) should include all designated responsible parties and clearly identify each responsible party’s responsibilities and obligations. Coordination with all responsible parties should begin early and continue throughout the process of mitigating the vapor intrusion risk. This coordination will ensure that applicable considerations are addressed.

7.17 TERMINATION OF BUILDING CONTROLS

Subsurface remediation efforts will eventually reduce VC concentrations in soil, soil gas, and/or groundwater to levels that no longer require remediation. At this point, vapor mitigation systems may be shutdown and/or removed, depending on the preferences of the building owners and obligations of responsible parties, and O&M requirements would cease.

Early in the decision-making process, stakeholders should consider how to determine when vapor mitigation is no longer required. This decision will affect the type of data that will need to be collected during the operating period of the mitigation system. The decision should be part of the data quality objective process.

The response action implementation report should include specific provisions for determining that corrective action is complete, including the termination of the vapor intrusion mitigation system. The confirmation sampling and analysis plan should be a part of these provisions. The responsible party should conduct subsequent sampling rounds to ensure the absence of contaminant rebounds and to verify the appropriateness of system termination.

The response action completion report should contain the confirmation sampling results and justification for termination of the vapor intrusion mitigation system. Vapor mitigation should only be terminated when soil, soil gas, and/or groundwater concentrations have achieved and maintained heath-based remediation goals. Responsible parties should not use indoor air sample results alone to justify mitigation termination. Provisions for termination of mitigation systems should include: specific procedures for the notification of owners/tenants; removal of associated LUCs or other ICs; notification of other applicable stakeholders; and instructions relative to the removal of physical components of the system if desired by the owner/tenant.
8.0 REFERENCES AND ADDITIONAL RESOURCES

8.1 REFERENCES

This document is currently under revision or being updated. Please check the DTSC Web-site for the most current version.

USEPA. 2008b. Engineering Issue: Indoor Air Vapor Intrusion Mitigation Approaches. EPA/600/R-08/115. October. www.epa.gov/nrmrl/pubs/600r08115/600r08115.htm

8.2 ADDITIONAL RESOURCES

GLOSSARY

Ambient Air. Refers to outdoor air at a vapor intrusion site and reflects background air concentrations of VCs from numerous anthropogenic sources, such as vehicle exhaust, industrial stack emissions, etc.

Background Air. See Ambient Air.

Brownfields. Brownfields are properties that are contaminated, or thought to be contaminated, and are underutilized due to perceived remediation costs and liability concerns.

Buildings. Buildings include any structure in which current or future occupants could potentially contact contaminated indoor air.

CERCLA. The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), commonly known as Superfund, was enacted by Congress on December 11, 1980, and amended in 1986, by the Superfund Amendments and Reauthorization Act (SARA). This law provided broad Federal authority to respond directly to releases or threatened releases of hazardous substances that may endanger public health or the environment. CERCLA established prohibitions and requirements concerning closed and abandoned hazardous waste sites, provided for liability of persons responsible for releases of hazardous waste at these sites; and established a trust fund to provide for cleanup when no responsible party could be identified.

CEQA. The California Environmental Quality Act (CEQA; Public Resources Code, §21000 et seq) requires public agencies to disclose and consider the environmental implications of their discretionary decisions, and to eliminate or reduce the significant environmental impacts of their discretionary decisions whenever it is feasible to do so.

CHHSLs. The Office of Environmental Health Hazard Assessment (OEHHA), on behalf of Cal/EPA, developed the California Human Health Screening Levels (CHHSLs) as a tool to assist in the evaluation of contaminated sites and to estimate the degree of remediation effort at a contaminated property. CHHSLs are concentrations of contaminants in soil gas or indoor air that the Cal/EPA considers to be below thresholds of concern for risks to human health from vapor intrusion.

Cleanup Goal. Contaminant concentration against which the success or completeness of a cleanup effort is evaluated.

Corrective Measures Study. The corrective measures study is the mechanism for the development, screening, and detailed evaluation of alternative corrective actions under the RCRA corrective action process.

Degradation Product. Refers to the natural degradation of VCs in soil, soil gas, or groundwater due to microbial degradation or an abiotic process. As an example, TCE will biodegrade under anaerobic conditions to cis-1,2-DCE and vinyl chloride.
Exposure Pathway. The way a chemical comes into contact with a receptor. For vapor intrusion, VCs in groundwater will migrate into the air-filled spaces in soil (soil gas); VCs in soil gas will migrate through the soil column and through cracks in the building foundation into the indoor air where they can ultimately be inhaled by the building occupants.

Feasibility Study. Under the National Contingency Plan process (used by DTSC under California HSC chapter 6.8), the feasibility study is the mechanism for the development, screening, and detailed evaluation of alternative remedial actions.

Hazard Index. Refers to the cumulative, noncancerous health hazard estimate for a site. The cumulative hazard index is the sum of the hazard quotients for individual chemicals and is defined as:

\[
\text{Hazard Index} = \sum_{i=1}^{n} \frac{\text{inhale dose of chemical } i}{\text{reference dose of chemical } i}
\]

HWCL. Hazardous Waste Control Law, Health and Safety Code, division 20, chapter 6.5.

Institutional Control. Institutional controls are actions, such as land use restrictions and/or prohibitions, etc., that help minimize the potential for human exposure to contamination by ensuring appropriate land or resource use. Institutional controls are bona fide remedies for residual contaminants at concentrations not suitable for unrestricted land uses. Remedy implementation of institutional controls includes execution and recordation of a “Covenant to Restrict use of Property, Environmental Restriction” with the county recorder’s office.

Interim Actions. Interim actions are short-term response actions performed pursuant to CERCLA or HSAA to control on-going risks while site characterization is underway or before a final response action is selected.

Interim Measures. Interim measures are short-term response actions performed pursuant to RCRA or HWCA to control on-going risks while site characterization is underway or before a final response action is selected.

Land Use Covenant. Written instrument (DTSC titles this instrument as the “Covenant to Restrict Use of Property, Environmental Restoration”) used to require compliance with certain obligations and restrict use of property. Land use covenants run with the land and are recorded at the county recorder’s office so that they will be found during a title search of the property deed.

Mitigation. Engineering controls taken to reduce the entry of vapors into the building until cleanup goals in the subsurface are met.

National Contingency Plan. The National Oil and Hazardous Substances Pollution Contingency Plan [40 Code of Federal Regulations sections 300.1 - 300.920], more commonly called the National Contingency Plan or NCP, is the federal government’s blueprint for responding to both oil spills and hazardous substance
releases. The NCP includes a framework for responding to hazardous substance spills.

Non-time-critical Removal Action. Non-time-critical removal actions, as defined by CERCLA, are removal actions that the lead agency determines, based on the site evaluation that a removal action is appropriate, and a planning period of at least six months is available before on-site activities must begin.

RCRA. The Resource Conservation and Recovery Act, an amendment to the Solid Waste Disposal Act to address the huge volumes of municipal and industrial solid waste generated nationwide. Under RCRA, USEPA has the authority to control hazardous waste from the "cradle-to-grave." This includes the generation, transportation, treatment, storage, and disposal of hazardous waste. RCRA also sets forth a framework for the management of non-hazardous wastes. [Title 40 of the Code of Federal Regulations, Parts 239 through 282]

Receptor. Refers to the hypothetical (future buildings) or actual person being exposed to VCs from vapor intrusion. The amount of exposure will be defined by the land use, such as residential, commercial/industrial, school, etc., and how much time a person spends on-site.

Remedial Action Plan. Under the HSAA, the Remedial Action Plan is the response action decision document for a remedial action for which the capital costs of implementation are projected to cost $2 million or more.

Remediation. An action that reduces the level of contamination in the environmental media, such as soil, soil gas, and/or groundwater that are acting as the source of the indoor air vapors.

Removal Action Workplan. Under the HSAA, the Removal Action Workplan (RAW) is the response action decision document for a nonemergency removal action that is projected to cost less than $2 million at a hazardous substance release site. Typically, these are short-term actions designed to stabilize or cleanup a site posing an immediate threat to human health or the environment.

Response Action. Facility closure, corrective action, remedial action, or other response action to be undertaken pursuant to division 20 of the Health and Safety Code.

Risk Assessment. The scientific process used to estimate the likelihood that a chemical detected at a site may be harmful to human health and the environment.

Risk Management. The process of evaluating alternative regulatory and non-regulatory responses to risk/hazard and selecting among them. The selection process necessarily requires the consideration of scientific, legal, economic, political, and social factors.

Source Remediation. See Remediation.
APPENDIX A
EXAMPLE DESIGN BASIS/Criteria
FOR SUB-SLAB VENTING AND SUB-SLAB DEPRESSURIZATION SYSTEMS

This section identifies example design considerations for SSV and SSD systems installed in existing buildings and installed in conjunction with new construction.

A.1 EXISTING BUILDING DESIGN REQUIREMENTS FOR SSD SYSTEMS

This section provides more specific design considerations for installation of a SSD system in an existing building with a slab foundation. This section could also be applied to existing buildings with other types of foundations (such as with a crawl space), if a liner system is installed. The following recommendations should be considered in the design of a SSD system in an existing building.

Collection Pipe Spacing and Diameter. Soil properties (such as soil gas permeability and diffusion coefficients) should be considered in the design and spacing of the sub-slab collection piping system. At a minimum, a venting collection pipe system should be placed such that all points immediately beneath the slab are located within 20 to 25 feet of a manifold pipe. The subsurface gas collection pipes should be perforated and at least two inches in diameter. A low profile collection and venting system may be used as an alternative to round collection pipes.

Collection Pipe Layout. Collection piping for existing buildings may be either vertically or horizontally installed. Pipe orientation should be dictated by site-specific conditions. Typically, small buildings (such as single family homes) can be mitigated with vertical collection points where the groundwater table is sufficiently deep, in similar fashion to radon mitigation. For larger buildings, horizontal piping may be warranted. Such piping can be installed through the foundation by trenching or installed beneath the building via horizontal drilling. The horizontal collection piping should extend the full width of the building and be located no more than five feet beneath the slab. The collection/vent piping system should be thread connected, not solvent-welded. The need for drainage or de-watering improvements to prevent flooding of any portion of the collection/vent piping should be evaluated and suitable improvements should be installed, as necessary, to insure the proper operation of the collection pipe system.

Vent Riser Design. The underground gas collection pipes should be connected to solid vent risers that extend above the building. The vent risers should be equipped with a sampling port and fitted with a non-restricting rain guard to prevent precipitation and debris from entering the piping system. Installation of a turbine as a vent cap may also be applicable. Vent risers should be properly secured (such as enclosed within wall cavities or pipe chases) to prevent damage. A minimum of two vertical vent risers [equivalent two 2-inch diameter] for the first 10,000 square feet (ft²) of building footprint area and one additional vertical vent riser for each additional 10,000 ft² of building footprint should be provided. Whenever practicable, vent riser pipes should terminate above the highest roof of the building and above the highest ridge. Vent riser pipes attached to, or penetrating the sides of, buildings should be located at least 10 feet above ground level, at least one foot above the edge of the roof, and at least 10 feet away from any window, door, or other opening (ASTM
2007b). However, the riser pipe position should be selected on a case-by-case basis and should consider the building roof design.

Vent Riser Diameter. At a minimum, each vent riser piping should consist of 2-inch diameter pipes. The size of the vent risers may be reduced to 1.5-inch diameter where necessary for structural reasons provided additional vent risers are installed to provide a flow capacity equivalent to the appropriate number of 2-inch diameter vent risers.

Utility Trench. Utility trenches are generally used in large buildings (such as offices, schools, and commercial/industrial) for utility runs and may become conduits for soil vapors to enter the building. Utility trench dams should be installed as a precautionary measure to reduce the potential for soil vapor to migrate beneath a structure through the relatively permeable trench backfill. An impermeable dam or plug constructed of bentonite-soil mixture, or sand-cement slurry (or equivalent) should be installed in all utility trenches that are backfilled with sand or other permeable material for new or replacement utility lines (such as water, sewer, phone, electrical, and cable). These dams should extend for a distance of at least three feet from the perimeter of the structure and from at least six inches above the bottom of the perimeter footing to the base of the trench.

Conduit Seals. Conduit seals should be provided at the termination of all utility conduits to reduce the potential for combustible gas migration along the conduit to the interior of the building. These seals should be constructed of closed cell polyurethane foam, or other inert gas-impermeable material, extending a minimum of six conduit diameters or six inches, whichever is greater, into the conduit. Wye seals should not be used for main electrical feed lines.

Electrical conduits should be provided with seals as required by the appropriate sections of the National Electrical Code (NFPA 70) as presented in Article 500 Hazardous (Classified) Locations Class I, II, and III, Divisions 1 and 2. All NFPA 70 requirements should be met for all work in any classified area, given the specified classifications of the project.

The local APCD or AQMD may require permits or authorizations for a passive VCs collection and venting system that exhausts to atmosphere. The local APCD or AQMD should be contacted to confirm their requirements.

VC Monitoring Program. All recommendations for a VC monitoring program (see Chapter 7) are generally applicable.

A.2 NEW CONSTRUCTION DESIGN REQUIREMENTS FOR SUB-SLAB VENTING SYSTEMS

This section recommends design requirements for installation of a SSV system and sub-slab liner system concurrent with new construction of buildings or structures. All considerations for the existing structure retrofit mitigation system (see Section A.1) are also generally applicable for a SSV system in a new structure, except as described below.
Pipe Spacing Design. If an appropriate permeable subgrade material is provided for the collection piping (e.g., sand or gravel), evaluation of native soil permeability characteristics may not be necessary for the pipe spacing design.

Sub-slab Liner System. A sub-slab liner system should meet the following requirements:

- Sub-slab liners should be installed by qualified personnel, preferably with manufacturer certification.
- Sub-slab liners should be constructed with approved materials and thicknesses (e.g., 60-mil or 0.060 inch of high-density polyethylene (HDPE), rubberized asphalt, or equivalent).
- Sub-slab liners should be placed a maximum of one foot below the floor slab and a maximum of six inches above the gas collection piping.
- Sub-slab liners should be anchored to footings.
- Protective layers consisting of sand (at a minimum, two inches or thicker) and/or geotextile (at a minimum, six ounces per square yard) should be laid below and above the sub-slab liner.
- Because of seismic concerns, the sub-slab liner should not pass below footings and/or stiffener beams of the structure of concern without a careful evaluation and confirmation data to support the beneath footing passage.
- Gas tight seals (e.g., boots) should be provided at all pipe or conduit penetrations through the sub-slab liner. Gas tight seals should be provided where the sub-slab liner attaches to interior and perimeter footings.

A.3 NEW CONSTRUCTION DESIGN REQUIREMENTS FOR SUB-SLAB DEPRESSURIZATION SYSTEMS

All considerations for the existing structure retrofit and new construction mitigation systems described in Sections A.1 and A.2 are also generally applicable for a SSD system installed with a sub-slab liner in a new structure. However, a SSD system would also include a properly sized blower. An air permit from the local APCD or AQMD is typically required for a SSD system. The APCD or AQMD should be contacted regarding the permit requirements.
APPENDIX B
EXAMPLE OF DESIGN AND INSTALLATION REQUIREMENTS FOR SSD SYSTEMS

Note: The requirements listed below are extracted from the Orange County Fire Authority, Planning, and Development Services guidance entitled Combustible Soil Gas Hazard Mitigation (2008), as modified by DTSC. These are reprinted as a design example and are not DTSC requirements.

All SSD systems should be designed in conformance with standard engineering principles and practices. The design for the SSD system should be approved by a California Registered Professional Engineer experienced in SSD system installation and should be in accordance with applicable Uniform Building, Mechanical, and Plumbing Codes.

1) Ventilation trenches should be placed such that no portion of the foundation is more than 25 feet from a ventilation trench. Trench cross section dimensions should not be less than 12 inches by 12 inches. Ventilation trenches should be back filled with pea gravel approximately 3/8 inch in diameter, or other material of similar size and porosity. A preferred alternative to vent trenches is a continuous gravel blanket with a collection piping arrangement in the same configuration used with the trench design.

2) Ventilation trenches should be provided with perforated pipe of not less than 4 inches in diameter. The total pipe perforation area should be at least equal to 5 percent of the total surface area of the pipe. Perforated pipe should be located a minimum of 4 inches below the foundation.

3) Where piping transitions through building footings, the penetration should be accomplished in compliance with the Uniform Building Code and with the approval of the Building official.

4) Perforated pipe should be connected to vertical ventilation pipe. Vertical ventilation pipe should be not less than 3 inches in diameter and should be constructed of materials specified by the Uniform Plumbing and Mechanical Codes. All joints should be tightly sealed with approved materials. Ventilation pipe may be located within walls/chases or should be similarly protected from physical damage. Ventilation pipes should terminate at a height determined acceptable by the design engineer but not less than 18 inches above the adjacent level. Ventilation pipes should be located at least 3 feet from a parapet wall. Ventilation pipes should terminate at a distance of at least 10 feet from any building opening or air intake and at least 4 feet from any property line. Any ventilation pipe located within an open yard should terminate at a height of not less than 10 feet above adjacent grade.

5) The vertical collection pipe should be equipped with a sampling port. The discharge point of a ventilation pipe should be provided with a non-restricting screened rain guard to prevent precipitation and debris from entering the piping system. The electrical classification of the area surrounding the discharge point should be taken into account in the overall building design. Termination of all ventilation pipes should
be provided with a “T” connection or other approved rain cap to prevent the intrusion of rainwater.

6) Ventilation pipes should be clearly marked to indicate that the pipe may contain volatile organic compounds. This may be accomplished through stencils, labels, or other methods. Pipes should be marked near their termination point and at 5-foot intervals along the remainder of the ventilation pipe. This includes sections encased within walls or other enclosures. An acceptable identifier would be the words “Potentially Hazardous Volatile Compounds” printed in 2-inch letters.

7) All underground electrical conduits penetrating the slab or foundation of the building should be provided with a seal-off device as normally found on classified electrical installations. For purposes of design, sub-slab areas should be considered a Class 1 Division 2 hazardous area classification (NFPA 70 Article 500).
APPENDIX C
DIAGNOSTIC TESTING OF AIR FLOW CHARACTERISTICS BENEATH EXISTING BUILDINGS

Note: The content of this appendix is modified from the Massachusetts Department of Environmental Protection guidance entitled *Guidelines for the Design, Installation, and Operation of Sub-Slab Depressurization Systems* (1995).

The air flow characteristics and capacity of the material(s) beneath the slab should be quantitatively determined by diagnostic testing, a procedure analogous to conducting a soil vapor extraction pilot test. This is an important step in the SSD design process, and should always be performed prior to the design and installation of a SSD system. The objective of diagnostic testing is to investigate and evaluate the development of a negative pressure field, via the induced air flow beneath the existing building slab. This information is used to determine whether a low pressure/high flow or high pressure/low flow system is necessary, and to determine the number and location of necessary system extraction points.

The scope (or complexity) of the diagnostic testing is a function of the building size and the presence of structures that may interfere with air flow. For larger buildings, such as commercial buildings and school buildings, more extensive and involved sub-slab diagnostics are essential. Structures such as utility tunnel floors and walls, crawl spaces, internal continuous footings, and/or frost walls should be considered in the diagnostic evaluations, as they can impede air flow.

Diagnostic testing is conducted by drilling small diameter holes through a building slab, applying a vacuum to one hole (an extraction hole), and measuring pressure drops at surrounding test holes (observation holes). Extraction and observation holes should be placed in the most unobtrusive locations possible; utility rooms and closets are good choices. Care must be taken to avoid damaging sub-slab utilities or conduits. Generally, the extraction hole should be at least 3/4 inches in diameter and the test holes should be 3/8 to 5/8 inches in diameter. Test holes should be placed at representative locations, such that the size of the effective pressure field under the slab may be evaluated.

Typically, a "shop vacuum" unit is used to evacuate sub-slab air from the extraction hole. During the test, the extraction vacuum and flow rate should not exceed the capacity of potential SSD system blowers. The pressure drop and flow rate at this extraction point should be monitored and recorded. Pressure drops at the test holes should be measured quantitatively with a pressure gauge (e.g., a magnehelic gauge).

The vacuum and flow rate of the "shop vacuum" used for testing should be recorded to provide an assessment of the testing parameters in conjunction with the test results. Literature regarding specifications for typical shop vacuums indicates a potential noise level of approximately 75 to 85 decibels. Therefore, the potential noise levels during testing procedures should be considered relative to impacts on building occupants and the need for worker hearing protection. An additional precaution during testing procedures is the consideration of the shop vacuum exhaust emissions. For health and safety considerations, the shop vacuum exhaust should be directed to and vented outside of the building.
Atmospheric pressure may be of importance at sites where diagnostic testing indicates marginal negative pressure readings. In such cases, barometric pressure data should be obtained and reviewed for the day of testing, and previous several days. A trend of rising barometric pressure tends to promote advection of air into the ground, which may be falsely interpreted as a negative pressure field created during diagnostic tests. Where this concern exists, the testing should be repeated during a time of falling barometric pressures.

Two approaches may be used to monitor and document the development of a negative pressure field: pressure testing and smoke testing. Pressure testing provides a direct and quantitative means to measure a negative pressure field. However, in cases where very permeable fills/subsoils are present, large volumes of air can be moved with relatively little pressure drop, undetectable by even the most sensitive gauge. In these cases, the creation of a negative pressure field can be verified by smoke tests, which demonstrate the advection of smoke (air) into the ground (i.e., through the slab).

Following the test, the diagnostic extraction and test holes (and any leaked areas) should be sealed with a Portland cement grout, although at least one or two holes should be temporarily sealed with a removable sealant, such as caulk, until after installation of the final SSD system, in order to provide points to demonstrate establishment of a negative pressure field.

The diagnostic testing should also address the potential for back drafting both during the testing procedures and in consideration of the mitigation design. See Section 6.1.3 for additional discussion of back drafting considerations.