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2. Toxics Identification 
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• Suspicious/threat powders 
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1. Introduction 
 
 

• Goal: identify unknown, suspected toxics and their likely sources  

1. Microscopy to measure individual particles’ size, chemistry, morphology 

2. Passive samplers to capture chronic air exposures  

3. Portable sensors to capture acute, intermittent air exposures 



EHLB Microscopy  

• Optical techniques: 

• Low-power Stereozoom Microscopy  

• Polarized Light Microscopy (PLM) 

• Differential Interference Contrast Microscopy (DIC) 

• Phase Contrast Microscopy (PCM)  

• Electron Microscopy: 

• Scanning Electron Microscopy/ Energy Dispersive Spectroscopy 
(SEM/EDS) 

• Scanning Transmission Electron Microscopy/ EDS/Selected Area 
Electron Diffraction (STEM/EDS/ SAED) 

• Molecular (vibrational) micro-spectroscopy: 

• Fourier-transform infrared (FTIR) Microscopy   

• Raman Micro-spectroscopy (RMS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nikon Eclipse E600 

FEI Tecnai 12/Oxford STEM/EDS 

FEI XL30/Noran NS7 ESEM/EDS 

Nicolet Continuum/Nexus Micro-FTIR 
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UNC passive airborne particulate matter (PM) samplers  

SEM 
stub 

stainless steel mesh 

Polycarbonate filter 

removable mesh cap 
with retaining screws 

Microscopy 
  (individual particle size / chemistry) 

• Silent (personal or residential sampling) 
• Do not require power (remote locations)  
• Inexpensive 
• Multiple deployment to map spatial variability 

Weather shelter 
for ambient 
sampling 

1.8 cm 

Portable, continuous-monitoring sensors 

• Small pumps or passive, powered by batteries 

• Dataloggers for post-investigation download 

• Detect contaminant ‘spikes’ on the order of minutes or seconds 

PM2.5 CO 
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2. Toxics Identification 
 
 

• Microscopy especially useful if: 

• Minimal sample volume (~1 mm3) 

• Difficult matrices or non-destructive analysis required (e.g., non-soluble solids)  

• Toxicity specific to particle shape or crystal phase, rather than chemistry (e.g., 
asbestos) 

• Heterogeneous distribution of toxics within substance (e.g., thin coating on 
surface) 



ID of toxics and unknowns in consumer products, foods, and medicines 

Fiberglass, 
Al 

Suspected 
glass in 
grape juice 

FTIR 
microscopy 

Contaminant 

CaC4H4O6 

SEM/EDS 

SEM/EDS Pb, As, Hg in 
Ayurvedic 
medicine 

Au-
coated 
tablet 

Suspected 
asbestos, Pb 
in non-
burning 
cigarettes 

Suspected 
asbestos, Pb 
in non-
burning 
cigarettes 

TEM/EDS 

Asbestos emissions 
from modern brakes 
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ID of Natural Occurrences of Asbestos (NOA) vs. intermixed, non-asbestiform phases 

GIS Map of Potential NOA Deposits in 
Serpentinite and Franciscan Melange 
rocks 

Optical Microscopy (stereozoom, PLM) 

ID ambiguous 
with PLM 
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ID of Natural Occurrences of Asbestos (NOA) vs. intermixed, non-asbestiform phases 

ESEM/EDS TEM/SAED/EDS 

Chrysotile asbestos 

Non-asbestiform 
serpentine fiber 

Polygonal 
serpentine 
(PS) 

PS 

PS CHRY 

b 
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Mineral fiber library (ongoing) 

PLM of NOA in gravel (chrysotile) 

SEM/EDS of non-asbestos fibers in brakes (wollastonite) 

PLM of Libby mine fibers  (winchite/richterite) 

SEM of amphibole cleavage fragments (anthophyllite) 

[PLM, SEM/EDS, TEM/EDS/SAED] 
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3. New Exposure Assessment Methods 
 
 

• Improved exposure assessment methods needed for public health 
investigations 

• More rapid assessments needed for urgent responses  

• Easily deployed samplers for community measurements that can be mailed back 
to lab 
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Particle size distribution anomalies 
(monodisperse peaks) from 
continuous particle monitors 

Rapid, automated fungal and bacterial spore detection 

Inexpensive slit-impactor 
cassettes and microscopy 
image analyses 



Wildfire sampling in nearby communities with 
passive sampler PM (chemistry size distributions) 
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San Diego/Encinitas  
October 2007 

Passive sampling of airborne PM10 in 
community near CAFO 

Passive PM monitoring in response to community concerns 

Lake Almanor, Aug. 2008 
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4. Environmental Forensics 
 
 

• Determine likely source of exposure 

• ID culprit, suggest control measures, and prevent further exposure 

• Source ID methods 

• Individual particle analyses: unique intermixed species or formation mechanisms 

• Match to bulk reference materials or library data 

• Sample in multiple locations to capture upwind/downwind   

• Compare to public data (GIS maps, time series) 



 Source ID of White Powders in Suspicious Threat Letters (hoaxes) 

FTIR microscope spectral match 

FTIR microscope apertured on target particle Stereozoom image of sample residue in vial 

unknown 

Specific brand of 
herbal 
sweetener 

J. Wagner, CDPH/EHLB 



Source ID of Toxics in foods and buildings 

Pb particles in public housing dust 

Indoor paint (viewed on edge) 

Windowsill paint – match to dust exposure 

Pb particles concentrated in 
muscle tissues - consumed by 

grasshoppers when alive 

SEM/EDS 

Pb in chapulines (grasshopper snacks) 

SEM/EDS 

Salt, spices only on outer 
surface – Pb not from  

cookware 
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Source ID of SF Bay bird feather contamination  

Optical microscopy – thickened ‘goo’ on feathers 

FTIR microscopy 

• ID = triglyceride / C18 fatty acid ester with diminished unsaturation  

• best match to reference sample: used, aged vegetable oil               

unknown 

aged 
cooking oil 

RMS 

S Ghosal 

Z Wang 
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Flame Retardant Morphology 
and Concentrations in Consumer 
Products (ESEM/EDS)  

Sb 

Br 

Black FR 

particles 

adhered loosely 

to red van seat 

upholstery 

fibers (12.5x) 

Black FR 

particles in 

SEM/EDS 

(3,200x) 

Black FR 

particles 

visible in foam, 

which 

contained a 

second, 

continuously 

distributed Br 

species (20x) 

Consumer products

Material              wFR, avg [%] % Metal Typical morphology

type Br [%] synergist  (image=80 um wide)

Van seat 

upholstery 

coating

<1 8.6
10 

(discrete)
3.3 Sb

VCR -- <1
7 (con-

tinuous)
<1 Bi-Cl 

Television -- --
15 

(discrete)
2.9 Sb

Computer 

monitor/ 

CRT

2.3 (0.9) <1 -- <1 Sb

Car visor 

covering
-- 36.0 -- <1 Sb

Van seat 

PUF
<1 --

7 (con-

tinuous)
--

Car visor 

PUF
<1 3.3 -- --

P [%] Cl [%]
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Flame Retardant 
Morphology and 
Concentrations in 
Environmental 
Dusts 
(ESEM/EDS) 

Environmental Dusts

Particle              wFR, avg [%] % Metal Typical morphology

type Br [%] synergist  (image=80 um wide)

A <1 1.5
31 

(discrete)
10.9 Sb

B <1 1.7
6 

(discrete)
15.8 Sb

C -- --
5 

(discrete)
1.8 Sb

D -- 15.0 -- 9.9 Sb

E -- --
12 

(discrete)
3.1 Sb

F -- --
3 

(discrete)
<1 Sb

G -- 3.0
11 

(discrete)
6.1 Sb

H -- <1 -- 5.6 Sb

I -- -- -- 1.8 Sb

P [%] Cl [%]

• 6 indoor dust samples 

• Range of dust-averaged  
[Br] by SEM/EDS =           
(ND – 73ppm) 

• Correlation of SEM/EDS 
with GC/MS: 

GC species rp
 (all) 

rp
  (without 

sample 

#3) 

BDE-209 0.66 0.98 

BDE-47 + 

BDE-99 
-0.07 -0.33 

BDE-47 + 

BDE-99 + 

BDE-209 

0.44 0.40 
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Equation to predict heterogeneity of dusts containing high-FR-content particles 

KFR     =        
/6) (      /100)(

     
3

avg FR,avgk,avg FR,

dustFR

dw

MC




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• Burn source profile obtained from burned 
grass reference and 24-hr PM samplers on 
downwind telephone pole, engulfed by 
ground-level plume  

• Downwind sample: 17x higher PM2.5 than 
upwind; dominated by “C-O only” (soot) 
and “K, P, Cl” (biogenic ash) 

Agricultural Burning 
Imperial Co. 

Upwind, 3.5 miles away 

Ca 
7% 

misc. 
5% 

C-O only 
0% 

K, P,  Cl 
12% 

SiO only 
10% AlSi 

66% 
SiO only 

0% 

K, P,  Cl 
14% C-O only 

29% 

AlSi 
47% 

misc. 
0% 

Ca 
10% 

45o from downwind, 0.3 miles away 

AlSi 
12% 

SiO only 
5% 

C-O only 
57% 

K, P,  Cl 
2% 

Ca 
1% 

misc. 
23% 

AlSi 
69% 

Ca 
10% 

misc. 
4% 

C-O only 
0% 

SiO only 
5% 

K, P,  Cl 
12% 

Directly downwind, 0.2 miles away 

SiO only 
0% 

AlSi 
4% 

Ca 
1% 

K, P,  Cl 
1% 

misc. 
0% 

C-O only 
94% 

misc. 
0% 

Ca 
5% 

C-O only 
40% 

AlSi 
23% 

K, P,  Cl 
32% 

SiO only 

0% 

PM2.5  PM10-2.5  

PM2.5  

PM2.5  

PM10-2.5  

PM10-2.5  

300 nm 

200 nm 

[SEM/EDS] 
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Black dust in small Sierra community 
with biomass facility  

Airborne dust Bottom ash from local  
biomass cogeneration facility 

(P
h

o
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A

R
B

) 
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Combustion aerosol library (ongoing) 

Soot agglomerates 
(diesel, residential wood 
burning, grass fires) 

Char (fuel oil) 

Carbon spheres (incomplete combustion) 

Fly ash (complete combustion) 

 

Al, Si, Ca, O 

V, Ni, Fe 

Al, Si, O, Fe, V 

[SEM/EDS] 
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ID of Particle Sources in high-
PM Urban Desert Regions using 
SEM/EDS, Passive Sampling, 
and GIS 

Dust storm,  Phoenix  (meteorologynews.com) 

Imperial Valley, CA and Phoenix, AZ designated 
as PM10 Non-Attainment areas 

EPA FRM PM and passive UNC PM samplers  
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SEM/EDS of Imperial and Phoenix PM shows mostly windblown dust (sometimes, soot from combustion also) 

• PM2.5 and -PM10 filters: large, crustal particles (2.5-15 mm, 10-30 mm)  

Crustal PM, 
Imperial 
PM2.5 filter  

Si            Ca           Na          Fl  Soot PM, 
Imperial 
PM2.5 filter 
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• Passive PM samplers: dominated by coarse, inorganic PM 
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Intersected maps: Dry + erodible + 
anthropogenically disturbed regions 

US Average annual precipitation 2005-9 US Erodible Land Classes, NLCD 2006 
 

GIS maps of Imperial (I) and Phoenix (P) dust PM source parameters 

I P I P 

I P I P 

US Cattle and cows per acre 2007 
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ID of PM2.5 and CO Sources inside Indoor Go-Kart Facility 
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