Vitamin C Supplementation May Lower Body Burdens of Persistent Organic Pollutants

Weihong Guo
ECL-DTSC
5/14/14
Outline

• Background
• Method
• Results
• Future Directions
Original Vitamin Study:

Investigators:

Dr. Gladys Block, professor of Epidemiology and Public Health Nutrition, UCB.

Dr. Nina Holland, adjunct professor in School of Public Health, UCB.

Objectives

• To investigate whether vitamin C or E could reduce C-reactive protein (CRP) and oxidative stress levels.
Study Population:

• Participants were recruited between Jan. 2005 and March 2006 from San Francisco, Berkeley and Oakland, CA.

• Exclusion criteria:
 – Age (<18 years);
 – First/second hand smokers;
 – Pregnancy or breastfeeding;
 – Disease conditions;
 – Use of certain prescription medications;
 – Consumption of supplements (Iron, vitamins)
 – Body weight ≥ 300 pounds or height > 75 inches.

• 396 were enrolled (age = 44 years, male = 34.6%).
Study Design Chart

396 Randomized
137 male
259 female

138 assigned to placebo
50 male
88 female

128 assigned to vitamin C
42 male
86 female

130 assigned to vitamin E
45 male
85 female

1000 mg/day vitamin C
800 IU/day vitamin E

2 months
Population Samples/Measurement

• Fasting venous blood:
 – Protected from light, maintained at <15°C, and processed within 6 hours.
• Waist and hip circumference.
• Body fat and BMI.
• Plasma ascorbic acid (vitamin C levels).
• Total or HDL, LDL chol. and trig.
• Malondialdehyde (MDA) conc. at baseline.
• Plasma F₂-isoprostane (F2-isop.) conc.
• C-reactive protein (CRP).
•
Publications

• The effect of Vitamin C and E on biomarkers of oxidative stress depends on baseline level (2008, Block, G).
 – Reduced plasma F2-isop. at the higher base levels.
 – Vitamin C having higher impact
 – Oxidative stress is elevated in obesity and may be a major mechanism for obesity related diseases.

• Vitamin C treatment reduces elevated C-reactive protein (2009, Block, G).
 – Vitamin E effect was not significant.
Pilot Study—Background

• Obesity:
 – Risk factor for many chronic diseases.
 – Sharp increase in the past 30 years worldwide (especially women and lower SES population).
 – Diet imbalance and genetic predisposition don’t explain.

• Emerging evidence:
 – POPs wide spread and population high exposure.
 – POP are persistent, lipophilic and accumulated in adipose tissue.
 – POPs are EDC and have toxic effects. POPs may be “Obesogens”, especially low-dose/lower molecular weight POPs.

• Antioxidant intervention:
 – It’s very difficult to remove the POPs from body.
 – Vitamin C may be a simple, safe and efficient remediation approach.
Why Vitamin C

• Vitamin C (ascorbic acid, AA):
 – One of the most natural antioxidants.
 – Can be formed in living tissue or supplemented.

• Significant biochemical function
 – Affects xenobiotic biotransformation by speeding up the microsomal hydroxylation process.
 – Reacts with free radicals, particularly those derived from oxidative stress, and enhances the solubility of xenobiotics to eliminate them in urine.

• Animal studies:
 – Vitamin C supplementation may directly reduce the levels of chlorinated hydrocarbons and PCBs as well as the adverse effects.
Study Design

- 15 healthy women (Vitamin C group).
 - 8 obese/overweight subjects.
 - 7 non-obese.

- 2 subjects have both serum and plasma.
 - test differences between two different matrices.

- POP levels need to be measured in the pilot study.
Study Objectives and Hypotheses

• If POP levels are associated with BMI levels.

• If there are POP level differences between plasma and serum.

• If vitamin C supplementation can reduce the POP levels.
Agilent GC-MSMS using electron ionization and multiple reaction monitoring.

- DB-5ms column (30 m × 0.25 mm, 0.25μm i.d.)
- ALL analytes were successfully and simultaneously measured.
Analytical Method Cont.

• Batch size = 20
 — 14 Samples
 — 2 Lab Blank Controls (LBC)
 — 2 Matrix Spiked Controls
 — 2 Standard Reference Material Controls

• Analytes = 29
 — 7 OCPs (HCB, b-BHC, oxychloridane, t-nonachlor, p,p’-DDE, o,p’-DDT, p,p’-DDT)
 — 5 PBDEs (BDE-47, 99, 100, 153, and 154)

• MDL (method detection limit)
 — Defined as 3 times the standard deviation (SD) of the lab blank concentration from current study.
Analytical Method Cont.

Twenty Nine Measured Compounds Plus 5 Internal Standards Separated Within 30 Minutes

<table>
<thead>
<tr>
<th>Compound</th>
<th>RT</th>
<th>Compound</th>
<th>RT</th>
<th>Compound</th>
<th>RT</th>
<th>Compound</th>
<th>RT</th>
<th>Compound</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCMX</td>
<td>8.1</td>
<td>PCB-74</td>
<td>13.5</td>
<td>PCB-165</td>
<td>17.1</td>
<td>PCB-183</td>
<td>20.0</td>
<td>PCB-194</td>
<td>23.9</td>
</tr>
<tr>
<td>HCB</td>
<td>9.2</td>
<td>PCB-66</td>
<td>13.7</td>
<td>o,p'-DDT</td>
<td>17.1</td>
<td>PCB-167</td>
<td>20.4</td>
<td>PBDE-100</td>
<td>24.0</td>
</tr>
<tr>
<td>PCB-14</td>
<td>9.5</td>
<td>PCB-101</td>
<td>14.3</td>
<td>PCB-153</td>
<td>17.6</td>
<td>PCB-156</td>
<td>21.2</td>
<td>PBDE-99</td>
<td>24.5</td>
</tr>
<tr>
<td>b-BHC</td>
<td>9.7</td>
<td>PCB-99</td>
<td>14.5</td>
<td>PCB-105</td>
<td>17.8</td>
<td>PCB-180</td>
<td>21.7</td>
<td>PBDE-154</td>
<td>25.7</td>
</tr>
<tr>
<td>PCB-65</td>
<td>12.3</td>
<td>p,p'-DDE</td>
<td>15.3</td>
<td>PCB-138</td>
<td>19.0</td>
<td>PCB-170</td>
<td>22.5</td>
<td>PBDE-139</td>
<td>26.7</td>
</tr>
<tr>
<td>Oxychloridane</td>
<td>13.5</td>
<td>PCB-118</td>
<td>16.6</td>
<td>PCB-187</td>
<td>19.8</td>
<td>PCB-203</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counts x10^5

Acquisition Time (min)
Analytical Method Cont.

- **Recoveries**: surrogate spikes in SRM, matrix spiked controls and all samples were within ±25% error ranges.

- **Recovery correction**:
 - Surrogate---TCMX, PCB14, PCB65, 165, and BDE139
 - PCB and OCP values were corrected based on the PCB65.
 - PBDE values were corrected based on the BDE139.

- **Surrogate standard variation**:
 - PCB65 and BDE139 had percent coefficient variation (C.V.%) of 11% and 12%, respectively. C.V.% = standard deviation/average*100
 - PCB65 and BDE139 showed no differences in samples of before and after vitamin C supplementation.

<table>
<thead>
<tr>
<th>Collector ID</th>
<th>PCB65</th>
<th>BDE-139</th>
</tr>
</thead>
<tbody>
<tr>
<td>%change mean</td>
<td>-0.8</td>
<td>-0.4</td>
</tr>
<tr>
<td>%change median</td>
<td>-5.4</td>
<td>0.5</td>
</tr>
<tr>
<td>%change geomean</td>
<td>-0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Data Analysis

• Log transformation of the POP levels given that the levels have log normal distributions.

• Pearson’s correlation coefficient.

• Paired t-test on 15 pair of samples.
Results

• Lipid
• POP and BMI levels
• POP levels in serum and plasma
• POP levels before and after vitamin C supplementation
Lipid Measurement

Lipid measurements of before and after vitamin C intervention

Lipid average value before = 6.16 mg/mL
Lipid average value after = 5.84 mg/mL

---5.2% decrease
Lipid normalization or not?

Reasons not to normalize and use only wet weight based data:

• Fasting blood were obtained in both before and after vitamin C supplementation.

• Total lipid values dropped slightly after vitamin C supplementation.
 – May cover up vitamin C effects due to over adjustment.

• Lipid measurement were done in two different time points, therefore may introduce measurement variations.
PCB, OCPs and PBDE Levels

• All PCBs and OCPs were correlated except PCB101.

• PCBs/OCPs and PBDEs were not correlated.

• PBDEs were correlated with each other.
POP Levels and BMI

- Log transformed POP levels were tested correlations against BMI baseline levels.

- Most of the PCBs and OCPs except PCB101, oxyclordane, o,p’-DDT had strong positive correlations with BMI levels.

- No correlations found in PBDEs and BMIs.

- No correlations found in changes of POPs and BMI levels after vitamin C supplementation. A negative correlation was found in changes of BDE153 (corr = -0.5292, p=0.0425) and BMI levels.
Strong correlation of log transformed POP levels (PCBs and OCPs but not PBDEs) and BMI levels.

Correlations between PCB153, p,p'-DDE and BMIs

- Corr = 0.9099
- Corr = 0.9806
Two subjects have both plasma and serum samples.

PCBs in duplicate samples (plasma and serum) for before and after vitamin C intervention

PBDEs in duplicate samples (plasma and serum) for before and after vitamin C intervention

OCPs in duplicate samples (plasma and serum) for before and after vitamin C intervention
POPs and Vitamin C

<table>
<thead>
<tr>
<th>Collector ID</th>
<th>PCB74</th>
<th>PCB118</th>
<th>PCB138</th>
<th>PCB153</th>
<th>PCB180</th>
</tr>
</thead>
<tbody>
<tr>
<td>%change mean</td>
<td>5.4</td>
<td>7.3</td>
<td>7.6</td>
<td>7.6</td>
<td>8.4</td>
</tr>
<tr>
<td>%change median</td>
<td>0.9</td>
<td>10.2</td>
<td>4.3</td>
<td>7.1</td>
<td>4.7</td>
</tr>
<tr>
<td>%change geomean</td>
<td>6.4</td>
<td>8.5</td>
<td>9.4</td>
<td>7.2</td>
<td>9.8</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0113</td>
<td>0.0016</td>
<td>0.0052</td>
<td>0.0166</td>
<td>0.0045</td>
</tr>
<tr>
<td>%>MDL</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collector ID</th>
<th>PCB203</th>
<th>HCB</th>
<th>p,p'-DDE</th>
<th>p,p'-DDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>%change mean</td>
<td>9.7</td>
<td>5.8</td>
<td>7.7</td>
<td>7.5</td>
</tr>
<tr>
<td>%change median</td>
<td>19.2</td>
<td>10.2</td>
<td>6.7</td>
<td>-0.9</td>
</tr>
<tr>
<td>%change geomean</td>
<td>8.5</td>
<td>5.2</td>
<td>7.4</td>
<td>11.5</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0713</td>
<td>0.0126</td>
<td>0.0044</td>
<td>0.0450</td>
</tr>
<tr>
<td>%>MDL</td>
<td>60</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

• Statistical Analysis: Paired t-test
Possible Mechanism

Vitamin C

From: Recent Advances in Environmental Toxicology and Health Effects, Edts Larry W. Robertson and Larry G. Hansen, 2001
Conclusion

• Strong correlations were found between PCBs/OCPs and BMI.

• POP levels were identical in both serum and plasma.

• Small pilot study showed significant drop in 9 out of 29 measured POPs after vitamin C supplementation.
Future Plans and Remarks

• Include 30-35 more pairs of participants and confirm the findings.

• If confirmed, vitamin C supplementation may have important public health implications by improving the health of obese and overweight people.
Acknowledgement

We thank all the participants who provided samples.

UCB Team

Nina Holland, Ph.D. ninah@berkeley.edu
Karen Huen, Ph.D. khuen@berkeley.edu
Veronica Davé, M.S. Student veronica.dave@berkeley.edu
Paul Yousefi, Ph.D. Student yousefi@berkeley.edu

DTSC Team

June-Soo Park
Sabrina C. Smith
Disclaimer

The ideas and opinions expressed herein are those of the authors and do not necessarily reflect the official position of the California Department of Toxic Substances Control.
Thank You!